The protein-tyrosine kinase ZAP-70 is implicated, together with the Src kinase p56lck, in controlling the early steps of the T-cell antigen receptor (TCR) signaling cascade. To help elucidate further the mechanism by which ZAP-70 regulates these initial events, we used a dominant-negative mutant approach. We overexpressed in the Jurkat T-cell line ZAP-70 mutated on Tyr-492 and Tyr-493 in the putative regulatory loop of its kinase domain. This mutant inhibited TCR-induced activation of nuclear factor of activated T cells by interfering with both intracellular calcium increase and Ras-regulated activation of extracellular signal-regulated kinases. Moreover, TCR-induced phosphorylation of pp36-38, thought to play a role upstream of these pathways, was found to be reduced. In contrast, overexpression of wild-type ZAP-70 induced constitutive activation of nuclear factor of activated T cells. The ZAP-70 mutant studied here could be phosphorylated on tyrosine when associated to the TCR ζ chain and was able to bind p56lck. This result demonstrates that Tyr-492 and Tyr-493 are not responsible for the Src homology domain 2-mediated association of p56lck with ZAP-70. Our data are most consistent with a model in which recruitment to the TCR allows ZAP-70 autophosphorylation and binding to p56lck, which in turn phosphorylates Tyr-492 and/or Tyr-493 with consequent up-regulation of the ZAP-70 kinase activity. ZAP-70 will then be able to effectively control phosphorylation of its substrates and lead to gene activation.
Mutation of tyrosine 492/493 in the kinase domain of ZAP-70 affects multiple T-cell receptor signaling pathways / Mege, D; DI BARTOLO, V; Germain, V; Tuosto, Loretta; Michel, F; Acuto, O.. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - ELETTRONICO. - 271:51(1996), pp. 32644-32652. [10.1074/jbc.271.51.32644]
Mutation of tyrosine 492/493 in the kinase domain of ZAP-70 affects multiple T-cell receptor signaling pathways.
TUOSTO, Loretta;
1996
Abstract
The protein-tyrosine kinase ZAP-70 is implicated, together with the Src kinase p56lck, in controlling the early steps of the T-cell antigen receptor (TCR) signaling cascade. To help elucidate further the mechanism by which ZAP-70 regulates these initial events, we used a dominant-negative mutant approach. We overexpressed in the Jurkat T-cell line ZAP-70 mutated on Tyr-492 and Tyr-493 in the putative regulatory loop of its kinase domain. This mutant inhibited TCR-induced activation of nuclear factor of activated T cells by interfering with both intracellular calcium increase and Ras-regulated activation of extracellular signal-regulated kinases. Moreover, TCR-induced phosphorylation of pp36-38, thought to play a role upstream of these pathways, was found to be reduced. In contrast, overexpression of wild-type ZAP-70 induced constitutive activation of nuclear factor of activated T cells. The ZAP-70 mutant studied here could be phosphorylated on tyrosine when associated to the TCR ζ chain and was able to bind p56lck. This result demonstrates that Tyr-492 and Tyr-493 are not responsible for the Src homology domain 2-mediated association of p56lck with ZAP-70. Our data are most consistent with a model in which recruitment to the TCR allows ZAP-70 autophosphorylation and binding to p56lck, which in turn phosphorylates Tyr-492 and/or Tyr-493 with consequent up-regulation of the ZAP-70 kinase activity. ZAP-70 will then be able to effectively control phosphorylation of its substrates and lead to gene activation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.