A method for clustering time-varying data by using neural networks, i.e. Kohonen self-organizing maps (SOMs), is suggested. Some dissimilarity measures for capturing the temporal structure of the data are introduced and used in Kohonen SOMs allowing clustering of temporal data. Another method for clustering time-varying data, called dynamic tandem analysis (DTA), based on the sequential utilization of dynamic factor analysis and cluster analysis, is also considered. The methods are applied to telecommunications market segmentation on real data. The obtained results are compared and discussed. (C) 2007 Elsevier B.V. All rights reserved.

Temporal self-organizing maps for telecommunications market segmentation / D'Urso, Pierpaolo; Livia De, Giovanni. - In: NEUROCOMPUTING. - ISSN 0925-2312. - 71:13-15(2008), pp. 2880-2892. [10.1016/j.neucom.2007.07.012]

Temporal self-organizing maps for telecommunications market segmentation

D'URSO, Pierpaolo;
2008

Abstract

A method for clustering time-varying data by using neural networks, i.e. Kohonen self-organizing maps (SOMs), is suggested. Some dissimilarity measures for capturing the temporal structure of the data are introduced and used in Kohonen SOMs allowing clustering of temporal data. Another method for clustering time-varying data, called dynamic tandem analysis (DTA), based on the sequential utilization of dynamic factor analysis and cluster analysis, is also considered. The methods are applied to telecommunications market segmentation on real data. The obtained results are compared and discussed. (C) 2007 Elsevier B.V. All rights reserved.
2008
dynamic tandem analysis; k-means clustering; kohonen som networks; multivariate time sequences; telecommunications operators
01 Pubblicazione su rivista::01a Articolo in rivista
Temporal self-organizing maps for telecommunications market segmentation / D'Urso, Pierpaolo; Livia De, Giovanni. - In: NEUROCOMPUTING. - ISSN 0925-2312. - 71:13-15(2008), pp. 2880-2892. [10.1016/j.neucom.2007.07.012]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/129890
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 11
social impact