In this paper we introduce a general framework for casting fully dynamic transitive closure into the problem of reevaluating polynomials over matrices. With this technique, we improve the best known bounds for fully dynamic transitive closure. In particular, we devise a deterministic algorithm for general directed graphs that achieves O(n(2)) amortized time for updates, while preserving unit worst-case cost for queries. In case of deletions only, our algorithm performs updates faster in O(n) amortized time. We observe that fully dynamic transitive closure algorithms with O(1) query time maintain explicitly the transitive closure of the input graph, in order to answer each query with exactly one lookup (on its adjacency matrix). Since an update may change as many as Omega(n(2)) entries of this matrix, no better bounds are possible for this class of algorithms.

Mantaining dynamic matrices for fully dynamic transitive closure / Demetrescu, Camil; Giuseppe F., Italiano. - In: ALGORITHMICA. - ISSN 0178-4617. - 51:4(2008), pp. 387-427. [10.1007/s00453-007-9051-4]

Mantaining dynamic matrices for fully dynamic transitive closure

DEMETRESCU, Camil;
2008

Abstract

In this paper we introduce a general framework for casting fully dynamic transitive closure into the problem of reevaluating polynomials over matrices. With this technique, we improve the best known bounds for fully dynamic transitive closure. In particular, we devise a deterministic algorithm for general directed graphs that achieves O(n(2)) amortized time for updates, while preserving unit worst-case cost for queries. In case of deletions only, our algorithm performs updates faster in O(n) amortized time. We observe that fully dynamic transitive closure algorithms with O(1) query time maintain explicitly the transitive closure of the input graph, in order to answer each query with exactly one lookup (on its adjacency matrix). Since an update may change as many as Omega(n(2)) entries of this matrix, no better bounds are possible for this class of algorithms.
File allegati a questo prodotto
File Dimensione Formato  
VE_2008_11573-129849.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 785.32 kB
Formato Adobe PDF
785.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/129849
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 7
social impact