Inference for continuous time multi-state models presents considerable computational difficulties when the process is only observed at discrete time points with no additional information about the state transitions. In particular, when transitions between states may depend on the time since entry into the current state, and semi-Markov models should be fitted to the data, the likelihood function is neither available in closed form. In this paper we propose a Markov Chain Monte Carlo algorithm to simulate the posterior distribution of the model parameters.

Markov Chain Monte Carlo methods for discretely observed continuous-time semi-Markov models / Barone, Rosario; Tancredi, Andrea. - 1:(2019), pp. 84-88. (Intervento presentato al convegno IWSM 2019 tenutosi a Portogallo).

Markov Chain Monte Carlo methods for discretely observed continuous-time semi-Markov models

Rosario Barone;Andrea Tancredi
2019

Abstract

Inference for continuous time multi-state models presents considerable computational difficulties when the process is only observed at discrete time points with no additional information about the state transitions. In particular, when transitions between states may depend on the time since entry into the current state, and semi-Markov models should be fitted to the data, the likelihood function is neither available in closed form. In this paper we propose a Markov Chain Monte Carlo algorithm to simulate the posterior distribution of the model parameters.
2019
IWSM 2019
MCMC; semi-Markov models
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Markov Chain Monte Carlo methods for discretely observed continuous-time semi-Markov models / Barone, Rosario; Tancredi, Andrea. - 1:(2019), pp. 84-88. (Intervento presentato al convegno IWSM 2019 tenutosi a Portogallo).
File allegati a questo prodotto
File Dimensione Formato  
Tancredi_Markov-Chain-Monte_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1292402
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact