The microscopic ion dynamics of liquid gallium was investigated at 320 K-that is, just above the melting point-and 970 K by inelastic neutron scattering experiments and molecular dynamics simulations. The high quality of the experimental data allowed the observation of density fluctuation modes extending up to 1.0 Å -1 and existing at both temperatures. At melting, an acousticlike mode propagating with a velocity definitely exceeding the sound velocity was observed, in agreement with the results of a recent inelastic x-ray scattering experiment. The mode velocity and damping were found to be almost temperature independent. The experimental response function was compared with the results of a molecular dynamics simulation, based on a simple model for the effective ion-ion potential which, however, did not contain any temperature-dependent parameter. The result worth noting is that, despite the simple potential, the simulation was capable to reproduce all the observed features of the measured dynamicstructure factor quantitatively and at both the temperatures. ©2005 The American Physical Society.
Vibrational dynamics of liquid gallium at 320 and 970 K / Bove, L. E.; Formisano, F.; Sacchetti, F.; Petrillo, C.; Ivanov, A.; Dorner, B.; Barocchi, F.. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - 71:1(2005), pp. 1-11. [10.1103/PhysRevB.71.014207]
Vibrational dynamics of liquid gallium at 320 and 970 K
Bove L. E.
;Sacchetti F.;Ivanov A.;
2005
Abstract
The microscopic ion dynamics of liquid gallium was investigated at 320 K-that is, just above the melting point-and 970 K by inelastic neutron scattering experiments and molecular dynamics simulations. The high quality of the experimental data allowed the observation of density fluctuation modes extending up to 1.0 Å -1 and existing at both temperatures. At melting, an acousticlike mode propagating with a velocity definitely exceeding the sound velocity was observed, in agreement with the results of a recent inelastic x-ray scattering experiment. The mode velocity and damping were found to be almost temperature independent. The experimental response function was compared with the results of a molecular dynamics simulation, based on a simple model for the effective ion-ion potential which, however, did not contain any temperature-dependent parameter. The result worth noting is that, despite the simple potential, the simulation was capable to reproduce all the observed features of the measured dynamicstructure factor quantitatively and at both the temperatures. ©2005 The American Physical Society.File | Dimensione | Formato | |
---|---|---|---|
Bove_Vibrational_2005.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
154.72 kB
Formato
Adobe PDF
|
154.72 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.