Today, nanophotonics still lacks components for modulation that can be easily implementable in existing silicon-on-insulator (SOI) technology. Chalcogenide phase change materials (PCMs) are promising candidates for tuning in the near infrared: at the nanoscale, thin layers can provide enough contrast to control the optical response of a nanostructure. Moreover, all-dielectric metamaterials allow for resonant behavior without having ohmic losses in the telecom range. Here, a novel hybridization of a SOI-based metamaterial with PCM GeTe is experimentally investigated. A metamaterial based on Si nanorods, covered by a thin layer of GeTe, is designed and fabricated. Switching GeTe from amorphous to crystalline leads to a rather high resonance-governed reflection contrast at 1.55 μm. Additional confocal Raman imaging is done to differentiate the crystallized zones of the metamaterials’ unit cell. The findings are in good agreement with numerical analysis and show good perspectives of all-dielectric tunable near-infrared nanophotonics.
Near-infrared modulation by means of GeTe/SOI-based metamaterial / Petronijevic, E.; Leahu, G.; Meo, V. D. I.; Crescitelli, A.; Dardano, P.; Coppola, G.; Esposito, E.; Rendina, I.; Miritello, M.; Grimaldi, M. G.; Torrisi, V.; Compagnini, G.; Sibilia, C.. - In: OPTICS LETTERS. - ISSN 0146-9592. - 44:6(2019), pp. 1508-1511. [10.1364/OL.44.001508]
Near-infrared modulation by means of GeTe/SOI-based metamaterial
Petronijevic E.
Primo
Conceptualization
;Leahu G.Investigation
;Sibilia C.Ultimo
Project Administration
2019
Abstract
Today, nanophotonics still lacks components for modulation that can be easily implementable in existing silicon-on-insulator (SOI) technology. Chalcogenide phase change materials (PCMs) are promising candidates for tuning in the near infrared: at the nanoscale, thin layers can provide enough contrast to control the optical response of a nanostructure. Moreover, all-dielectric metamaterials allow for resonant behavior without having ohmic losses in the telecom range. Here, a novel hybridization of a SOI-based metamaterial with PCM GeTe is experimentally investigated. A metamaterial based on Si nanorods, covered by a thin layer of GeTe, is designed and fabricated. Switching GeTe from amorphous to crystalline leads to a rather high resonance-governed reflection contrast at 1.55 μm. Additional confocal Raman imaging is done to differentiate the crystallized zones of the metamaterials’ unit cell. The findings are in good agreement with numerical analysis and show good perspectives of all-dielectric tunable near-infrared nanophotonics.File | Dimensione | Formato | |
---|---|---|---|
Petronijevic_et_al_Optics_Letters2019.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF | Contatta l'autore |
GETE Optics Letters corr accepted_xrd.docx
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.06 MB
Formato
Microsoft Word XML
|
1.06 MB | Microsoft Word XML |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.