In this paper, the smart management of buildings energy use by means of an innovative renewable micro-cogeneration system is investigated. The system consists of a concentrated linear Fresnel reflectors solar field coupled with a phase change material thermal energy storage tank and a 2 kWe/18 kWth organic Rankine cycle (ORC) system. The microsolar ORC was designed to supply both electricity and thermal energy demand to residential dwellings to reduce their primary energy use. In this analysis, the achievable energy and operational cost savings through the proposed plant with respect to traditional technologies (i.e., condensing boilers and electricity grid) were assessed by means of simulations. The influence of the climate and latitude of the installation was taken into account to assess the performance and the potential of such system across Europe and specifically in Spain, Italy, France, Germany, U.K., and Sweden. Results show that the proposed plant can satisfy about 80% of the overall energy demand of a 100 m2 dwelling in southern Europe, while the energy demand coverage drops to 34% in the worst scenario in northern Europe. The corresponding operational cost savings amount to 87% for a dwelling in the south and at 33% for one in the north.

Multi-country analysis on energy savings in buildings by means of a micro-solar organic rankine cycle system: a simulation study / Arteconi, Alessia; DEL ZOTTO, Luca; Tascioni, Roberto; Mahkamov, Khamid; Underwood, Chris; Cabeza, Luisa; Maldonado, Jose; Manca, Roberto; Mintsa, Andre; Bartolini, Carlo; Gimbernat, Toni; Botargues, Teresa; Halimic, Elvedin; Cioccolanti, Luca. - In: ENVIRONMENTS. - ISSN 2076-3298. - 5:11(2018). [10.3390/environments5110119]

Multi-country analysis on energy savings in buildings by means of a micro-solar organic rankine cycle system: a simulation study.

Luca Del Zotto;Roberto Tascioni;
2018

Abstract

In this paper, the smart management of buildings energy use by means of an innovative renewable micro-cogeneration system is investigated. The system consists of a concentrated linear Fresnel reflectors solar field coupled with a phase change material thermal energy storage tank and a 2 kWe/18 kWth organic Rankine cycle (ORC) system. The microsolar ORC was designed to supply both electricity and thermal energy demand to residential dwellings to reduce their primary energy use. In this analysis, the achievable energy and operational cost savings through the proposed plant with respect to traditional technologies (i.e., condensing boilers and electricity grid) were assessed by means of simulations. The influence of the climate and latitude of the installation was taken into account to assess the performance and the potential of such system across Europe and specifically in Spain, Italy, France, Germany, U.K., and Sweden. Results show that the proposed plant can satisfy about 80% of the overall energy demand of a 100 m2 dwelling in southern Europe, while the energy demand coverage drops to 34% in the worst scenario in northern Europe. The corresponding operational cost savings amount to 87% for a dwelling in the south and at 33% for one in the north.
2018
renewable technologies; combined heat and power production; organic Rankine cycle; buildings; energy savings
01 Pubblicazione su rivista::01a Articolo in rivista
Multi-country analysis on energy savings in buildings by means of a micro-solar organic rankine cycle system: a simulation study / Arteconi, Alessia; DEL ZOTTO, Luca; Tascioni, Roberto; Mahkamov, Khamid; Underwood, Chris; Cabeza, Luisa; Maldonado, Jose; Manca, Roberto; Mintsa, Andre; Bartolini, Carlo; Gimbernat, Toni; Botargues, Teresa; Halimic, Elvedin; Cioccolanti, Luca. - In: ENVIRONMENTS. - ISSN 2076-3298. - 5:11(2018). [10.3390/environments5110119]
File allegati a questo prodotto
File Dimensione Formato  
Arteconi_Multi-Country_2018.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 3.19 MB
Formato Adobe PDF
3.19 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1286020
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact