By using the classical umbral calculus, we propose a symbolic expression of multivariate Lévy processes. Compared with the classical one, the advantage of this approach relies in relaxing many of usual hypothesis necessary to deal with stochastic processes. As example, we recover the symbolic representation of multivariate Brownian motion and multivariate compound Poisson process. Open problems are also addressed. © 2011 American Institute of Physics.

On a symbolic version of multivariate Lévy processes / Di Nardo, E.; Oliva, I.. - 1389:(2011), pp. 345-348. (Intervento presentato al convegno International Conference on Numerical Analysis and Applied Mathematics: Numerical Analysis and Applied Mathematics, ICNAAM 2011 tenutosi a Halkidiki, grc) [10.1063/1.3636735].

On a symbolic version of multivariate Lévy processes

Oliva I.
2011

Abstract

By using the classical umbral calculus, we propose a symbolic expression of multivariate Lévy processes. Compared with the classical one, the advantage of this approach relies in relaxing many of usual hypothesis necessary to deal with stochastic processes. As example, we recover the symbolic representation of multivariate Brownian motion and multivariate compound Poisson process. Open problems are also addressed. © 2011 American Institute of Physics.
2011
International Conference on Numerical Analysis and Applied Mathematics: Numerical Analysis and Applied Mathematics, ICNAAM 2011
multivariate Lévy processes; umbral calculus
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
On a symbolic version of multivariate Lévy processes / Di Nardo, E.; Oliva, I.. - 1389:(2011), pp. 345-348. (Intervento presentato al convegno International Conference on Numerical Analysis and Applied Mathematics: Numerical Analysis and Applied Mathematics, ICNAAM 2011 tenutosi a Halkidiki, grc) [10.1063/1.3636735].
File allegati a questo prodotto
File Dimensione Formato  
Oliva_Symbolic-version_2011.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1285599
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact