Objectives: Incompatibility group N (IncN) plasmids have been associated with the dissemination of antimicrobial resistance and are a major vehicle for the spread of blaVIM-1 in humans and blaCTX-M-1 in animals. A plasmid multilocus sequence typing (pMLST) scheme was developed for rapid categorization of IncN plasmids. Methods: Twelve fully sequenced IncN plasmids available at GenBank were analysed in silico for selecting the loci for the IncN-specific pMLST. A total of 58 plasmids originating from different reservoirs (human, pig, poultry, cattle and horses) and geographic regions (Italy, Greece, Denmark, UK and The Netherlands) were classified by DNA sequencing of the amplicons obtained for the repA, traJ and korA loci. Results: Eleven sequence types (STs) were defined on the basis of allele sequences of the three selected loci. Most plasmids carrying blaCTX-M-1 (24/27) isolated in different countries from both animals and humans belonged to ST1, suggesting dissemination of an epidemic plasmid through the food chain. Fifteen of 17 plasmids carrying blaVIM-1 from Klebsiella pneumoniae and Escherichia coli, isolated during a 5 year period in Greece were assigned to ST10, suggesting that spread and persistence of this particular IncN-carrying blaVIM-1 lineage in Greece. Conclusions: This study proposes the use of pMLST as a suitable and rapid method for identification of IncN epidemic plasmid lineages. The recent spread of blaCTX-M-1 among humans and animals seems to be associated with the dissemination of an epidemic IncN plasmid lineage. © The Author 2011. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved.

Multilocus sequence typing of IncN plasmids / García-Fernández, A; Villa, L; Moodley, A; Hasman, H; Miriagou, V; Guardabassi, L; Carattoli, A.. - In: JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY. - ISSN 0305-7453. - 66:9(2011), pp. 1987-1991. [10.1093/jac/dkr225]

Multilocus sequence typing of IncN plasmids

Carattoli A.
2011

Abstract

Objectives: Incompatibility group N (IncN) plasmids have been associated with the dissemination of antimicrobial resistance and are a major vehicle for the spread of blaVIM-1 in humans and blaCTX-M-1 in animals. A plasmid multilocus sequence typing (pMLST) scheme was developed for rapid categorization of IncN plasmids. Methods: Twelve fully sequenced IncN plasmids available at GenBank were analysed in silico for selecting the loci for the IncN-specific pMLST. A total of 58 plasmids originating from different reservoirs (human, pig, poultry, cattle and horses) and geographic regions (Italy, Greece, Denmark, UK and The Netherlands) were classified by DNA sequencing of the amplicons obtained for the repA, traJ and korA loci. Results: Eleven sequence types (STs) were defined on the basis of allele sequences of the three selected loci. Most plasmids carrying blaCTX-M-1 (24/27) isolated in different countries from both animals and humans belonged to ST1, suggesting dissemination of an epidemic plasmid through the food chain. Fifteen of 17 plasmids carrying blaVIM-1 from Klebsiella pneumoniae and Escherichia coli, isolated during a 5 year period in Greece were assigned to ST10, suggesting that spread and persistence of this particular IncN-carrying blaVIM-1 lineage in Greece. Conclusions: This study proposes the use of pMLST as a suitable and rapid method for identification of IncN epidemic plasmid lineages. The recent spread of blaCTX-M-1 among humans and animals seems to be associated with the dissemination of an epidemic IncN plasmid lineage. © The Author 2011. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved.
2011
RNA directed RNA polymerase, antibiotic resistance; article; comparative study; computer model; DNA sequence; Escherichia coli; gene frequency; gene locus; genetic association; geographic distribution; human; incompatibility group N plasmid; Klebsiella pneumoniae; multilocus sequence typing; nonhuman; nucleotide sequence; plasmid; species difference, Animals; Cattle; Disease Reservoirs; DNA, Bacterial; Drug Resistance, Bacterial; Escherichia coli; Europe; Food Chain; Horses; Humans; Klebsiella pneumoniae; Microbial Sensitivity Tests; Multilocus Sequence Typing; Plasmids; Poultry; Protein Array Analysis; Reverse Transcriptase Polymerase Chain Reaction; Swine
01 Pubblicazione su rivista::01a Articolo in rivista
Multilocus sequence typing of IncN plasmids / García-Fernández, A; Villa, L; Moodley, A; Hasman, H; Miriagou, V; Guardabassi, L; Carattoli, A.. - In: JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY. - ISSN 0305-7453. - 66:9(2011), pp. 1987-1991. [10.1093/jac/dkr225]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1284414
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 86
  • ???jsp.display-item.citation.isi??? 86
social impact