Existence of nontrivial nonnegative radial solutions of quasilinear equations $-\div(A(|\grad u|) \grad u)=f(u)$ in $\hbox{\bf R}^n$ is proved under general assumptions on the nonlinearity $f$ and the function $A$, without requiring homogeneity.
Existence results of radial solutions for quasilinear equations / Montefusco, Eugenio; P., Pucci. - In: ADVANCES IN DIFFERENTIAL EQUATIONS. - ISSN 1079-9389. - STAMPA. - 6:(2001), pp. 959-986.
Existence results of radial solutions for quasilinear equations
MONTEFUSCO, Eugenio;
2001
Abstract
Existence of nontrivial nonnegative radial solutions of quasilinear equations $-\div(A(|\grad u|) \grad u)=f(u)$ in $\hbox{\bf R}^n$ is proved under general assumptions on the nonlinearity $f$ and the function $A$, without requiring homogeneity.File allegati a questo prodotto
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.