The generalized smooth transition autoregression (GSTAR) parametrizes the joint asymmetry in the duration and length of cycles in macroeconomic time series by using particular generalizations of the logistic function. The symmetric smooth transition and linear autoregressions are nested in the GSTAR. A test for the null hypothesis of dynamic symmetry is presented. Two case studies indicate that dynamic asymmetry is a key feature of the U.S. economy. The GSTAR model beats its competitors for point forecasting, but this superiority becomes less evident for density forecasting and in uncertain forecasting environments.

Forecasting dynamically asymmetric fluctuations of the U.S. business cycle / Zanetti Chini, Emilio. - In: INTERNATIONAL JOURNAL OF FORECASTING. - ISSN 0169-2070. - 34:4(2018), pp. 711-732. [10.1016/j.ijforecast.2018.05.003]

Forecasting dynamically asymmetric fluctuations of the U.S. business cycle

Zanetti Chini, Emilio
2018

Abstract

The generalized smooth transition autoregression (GSTAR) parametrizes the joint asymmetry in the duration and length of cycles in macroeconomic time series by using particular generalizations of the logistic function. The symmetric smooth transition and linear autoregressions are nested in the GSTAR. A test for the null hypothesis of dynamic symmetry is presented. Two case studies indicate that dynamic asymmetry is a key feature of the U.S. economy. The GSTAR model beats its competitors for point forecasting, but this superiority becomes less evident for density forecasting and in uncertain forecasting environments.
2018
density forecasts; econometric modelling; evaluating forecasts; generalized logistic; industrial production; nonlinear time series; point forecasts; statistical tests; unemployment
01 Pubblicazione su rivista::01a Articolo in rivista
Forecasting dynamically asymmetric fluctuations of the U.S. business cycle / Zanetti Chini, Emilio. - In: INTERNATIONAL JOURNAL OF FORECASTING. - ISSN 0169-2070. - 34:4(2018), pp. 711-732. [10.1016/j.ijforecast.2018.05.003]
File allegati a questo prodotto
File Dimensione Formato  
ZanettiChini_Forecasting_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.68 MB
Formato Adobe PDF
2.68 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1283860
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact