Semi-Markov processes are a generalization of Markov processes since the exponential distribution of time intervals is replaced with an arbitrary distribution. This paper provides an integro-differential form of the Kolmogorov's backward equations for a large class of homogeneous semi-Markov processes, having the form of an abstract Volterra integro-differential equation. An equivalent evolutionary (differential) form of the equations is also provided. Fractional equations in the time variable are a particular case of our analysis. Weak limits of semi-Markov processes are also considered and their corresponding integro-differential Kolmogorov's equations are identified.
On semi-Markov processes and their Kolmogorov's integro-differential equations / Orsingher, E.; Ricciuti, C.; Toaldo, B.. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 275:4(2018), pp. 830-868. [10.1016/j.jfa.2018.02.011]
On semi-Markov processes and their Kolmogorov's integro-differential equations
Orsingher E.;Ricciuti C.
;Toaldo B.
2018
Abstract
Semi-Markov processes are a generalization of Markov processes since the exponential distribution of time intervals is replaced with an arbitrary distribution. This paper provides an integro-differential form of the Kolmogorov's backward equations for a large class of homogeneous semi-Markov processes, having the form of an abstract Volterra integro-differential equation. An equivalent evolutionary (differential) form of the equations is also provided. Fractional equations in the time variable are a particular case of our analysis. Weak limits of semi-Markov processes are also considered and their corresponding integro-differential Kolmogorov's equations are identified.File | Dimensione | Formato | |
---|---|---|---|
Orsingher_Semi-Markov_2018.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.72 MB
Formato
Adobe PDF
|
1.72 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Ricciuti_On-semi-Markov processes_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
611.55 kB
Formato
Adobe PDF
|
611.55 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.