The following article aims to briefly describe the long and intricate search path which led to the design of Sinapsi, a smart device inspired by nature, for helping blind people’s mobility and orientation in track and field. The description will be accompanied by an analysis of different solutions already developed for helping blind people and by multiple thoughts, theoretical and methodological, that aim to critically explain the renewed role of design, as well as to highlight the importance of biological reference in a complex world populated by artificial intelligence. In particular, we will show how inspiration from biological systems can be one of the most innovative and attainable methods, not just to incorporate biological characteristics into machines and artifacts (nothing particularly new, even in AI) but to use it in the design process of smart systems as an instrument for improving quality of life and to expand our best human qualities. In fact, the growing complexity derived from the AI systems’ increasing degrees of autonomy has raised issues concerning the relationship between the user and the intelligent entity, as well as important ethical issues that call into question the design and that can be overcome through inspiration from the logic and the principles governing the intimate intelligence of nature. Finally, the explanation becomes particularly interesting and deep when we talk about assistive devices for sensory disabled people, in which the co-dependent relationship between the user and the technology becomes stronger and in which the boundary between help and substitution, between enhancement and helplessness, risks fading.

The biological encoding of design: the premises for a new generation of “living” products. The example of Sinapsi / Lucibello, Sabrina; Rotondi, Carmen. - In: TEMES DE DISSENY. - ISSN 0213-6023. - (2019).

The biological encoding of design: the premises for a new generation of “living” products. The example of Sinapsi

Sabrina Lucibello
Writing – Original Draft Preparation
;
ROTONDI, CARMEN
Writing – Original Draft Preparation
2019

Abstract

The following article aims to briefly describe the long and intricate search path which led to the design of Sinapsi, a smart device inspired by nature, for helping blind people’s mobility and orientation in track and field. The description will be accompanied by an analysis of different solutions already developed for helping blind people and by multiple thoughts, theoretical and methodological, that aim to critically explain the renewed role of design, as well as to highlight the importance of biological reference in a complex world populated by artificial intelligence. In particular, we will show how inspiration from biological systems can be one of the most innovative and attainable methods, not just to incorporate biological characteristics into machines and artifacts (nothing particularly new, even in AI) but to use it in the design process of smart systems as an instrument for improving quality of life and to expand our best human qualities. In fact, the growing complexity derived from the AI systems’ increasing degrees of autonomy has raised issues concerning the relationship between the user and the intelligent entity, as well as important ethical issues that call into question the design and that can be overcome through inspiration from the logic and the principles governing the intimate intelligence of nature. Finally, the explanation becomes particularly interesting and deep when we talk about assistive devices for sensory disabled people, in which the co-dependent relationship between the user and the technology becomes stronger and in which the boundary between help and substitution, between enhancement and helplessness, risks fading.
2019
A.I.fication; living beings; complexity; co-evolution; bio-inspiration; intimate intelligence; assistive technologies; bat echolocation.
01 Pubblicazione su rivista::01a Articolo in rivista
The biological encoding of design: the premises for a new generation of “living” products. The example of Sinapsi / Lucibello, Sabrina; Rotondi, Carmen. - In: TEMES DE DISSENY. - ISSN 0213-6023. - (2019).
File allegati a questo prodotto
File Dimensione Formato  
Lucibello_The biological_2019.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 188.71 kB
Formato Adobe PDF
188.71 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1281046
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact