We consider the electrostatic Born-Infeld energy egin{equation*} int_{R^N}left(1-{sqrt{1-| abla u|^2}} ight), dx -int_{R^N} ho u, dx, end{equation*} where $ ho in L^{m}(R^N)$ is an assigned charge density, $m in [1,2_*]$, $2_*:=rac{2N}{N+2}$, $Ngeq 3$. We prove that if $ ho in L^q(R^N) $ for $q>2N$, the unique minimizer $u_ ho$ is of class $W_{loc}^{2,2}(R^N)$. Moreover, if the norm of $ ho$ is sufficiently small, the minimizer is a weak solution of the associated PDE egin{equation}label{eq:BI-abs} ag{$mathcal{BI}$} -operatorname{div}left(displaystylerac{ abla u}{sqrt{1-| abla u|^2}} ight)= ho quadhbox{in }mathbb{R}^N, end{equation} with the boundary condition $lim_{|x| oinfty}u(x)=0$ and it is of class $C^{1,alpha}_{loc}(RN)$, for some $alpha in (0,1)$.
On the regularity of the minimizer of the electrostatic Born–Infeld energy / Bonheure, Denis; Iacopetti, Alessandro. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - 232:2(2018), pp. 697-725. [10.1007/s00205-018-1331-4]
On the regularity of the minimizer of the electrostatic Born–Infeld energy
Bonheure, Denis
;Iacopetti, Alessandro
2018
Abstract
We consider the electrostatic Born-Infeld energy egin{equation*} int_{R^N}left(1-{sqrt{1-| abla u|^2}} ight), dx -int_{R^N} ho u, dx, end{equation*} where $ ho in L^{m}(R^N)$ is an assigned charge density, $m in [1,2_*]$, $2_*:=rac{2N}{N+2}$, $Ngeq 3$. We prove that if $ ho in L^q(R^N) $ for $q>2N$, the unique minimizer $u_ ho$ is of class $W_{loc}^{2,2}(R^N)$. Moreover, if the norm of $ ho$ is sufficiently small, the minimizer is a weak solution of the associated PDE egin{equation}label{eq:BI-abs} ag{$mathcal{BI}$} -operatorname{div}left(displaystylerac{ abla u}{sqrt{1-| abla u|^2}} ight)= ho quadhbox{in }mathbb{R}^N, end{equation} with the boundary condition $lim_{|x| oinfty}u(x)=0$ and it is of class $C^{1,alpha}_{loc}(RN)$, for some $alpha in (0,1)$.File | Dimensione | Formato | |
---|---|---|---|
Bonheure_On-the-regularity_2018.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
445.12 kB
Formato
Adobe PDF
|
445.12 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.