Capillarity functionals are parameter invariant functionals defined on classes of two-dimensional parametric surfaces in $mathbb{R}^3$ as the sum of the area integral and a non homogeneous term of suitable form. Here we consider the case of a class of non homogenous terms vanishing at infinity for which the corresponding capillarity functional has no volume-constrained $mathbb{S}^2$-type minimal surface. Using variational techniques, we prove existence of extremals characterized as saddle-type critical points.

Existence of isovolumetric S^2-type stationary surfaces for capillarity functionals / Caldiroli, Paolo; Iacopetti, Alessandro. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - 34:4(2018), pp. 1685-1709. [10.4171/rmi/1040]

Existence of isovolumetric S^2-type stationary surfaces for capillarity functionals

Caldiroli, Paolo
;
Iacopetti, Alessandro
2018

Abstract

Capillarity functionals are parameter invariant functionals defined on classes of two-dimensional parametric surfaces in $mathbb{R}^3$ as the sum of the area integral and a non homogeneous term of suitable form. Here we consider the case of a class of non homogenous terms vanishing at infinity for which the corresponding capillarity functional has no volume-constrained $mathbb{S}^2$-type minimal surface. Using variational techniques, we prove existence of extremals characterized as saddle-type critical points.
2018
isoperimetric problems; parametric surfaces; variational methods; H-bubbles
01 Pubblicazione su rivista::01a Articolo in rivista
Existence of isovolumetric S^2-type stationary surfaces for capillarity functionals / Caldiroli, Paolo; Iacopetti, Alessandro. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - 34:4(2018), pp. 1685-1709. [10.4171/rmi/1040]
File allegati a questo prodotto
File Dimensione Formato  
Caldiroli_Existence-of-isovolumetric_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 345.99 kB
Formato Adobe PDF
345.99 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1281022
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact