Capillarity functionals are parameter invariant functionals defined on classes of two-dimensional parametric surfaces in $mathbb{R}^3$ as the sum of the area integral and a non homogeneous term of suitable form. Here we consider the case of a class of non homogenous terms vanishing at infinity for which the corresponding capillarity functional has no volume-constrained $mathbb{S}^2$-type minimal surface. Using variational techniques, we prove existence of extremals characterized as saddle-type critical points.
Existence of isovolumetric S^2-type stationary surfaces for capillarity functionals / Caldiroli, Paolo; Iacopetti, Alessandro. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - 34:4(2018), pp. 1685-1709. [10.4171/rmi/1040]
Existence of isovolumetric S^2-type stationary surfaces for capillarity functionals
Caldiroli, Paolo
;Iacopetti, Alessandro
2018
Abstract
Capillarity functionals are parameter invariant functionals defined on classes of two-dimensional parametric surfaces in $mathbb{R}^3$ as the sum of the area integral and a non homogeneous term of suitable form. Here we consider the case of a class of non homogenous terms vanishing at infinity for which the corresponding capillarity functional has no volume-constrained $mathbb{S}^2$-type minimal surface. Using variational techniques, we prove existence of extremals characterized as saddle-type critical points.File | Dimensione | Formato | |
---|---|---|---|
Caldiroli_Existence-of-isovolumetric_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
345.99 kB
Formato
Adobe PDF
|
345.99 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.