Starting from interaction rules based on two levels of stochasticity we study the influence of the microscopic dynamics on the macroscopic properties of vehicular flow. In particular, we study the qualitative structure of the resulting flux-density and speed-density diagrams for different choices of the desired speeds. We are able to recover multivalued diagrams as a result of the existence of a one-parameter family of stationary distributions, whose expression is analytically found by means of a Fokker-Planck approximation of the initial Boltzmann-type model.
Multivalued fundamental diagrams of traffic flow in the kinetic Fokker–Planck limit / Visconti, Giuseppe; Herty, Michael; Puppo, Gabriella; Tosin, Andrea. - In: MULTISCALE MODELING & SIMULATION. - ISSN 1540-3459. - 15:(2017), pp. 1267-1293. [10.1137/16M1087035]
Multivalued fundamental diagrams of traffic flow in the kinetic Fokker–Planck limit
Visconti, Giuseppe;Puppo, Gabriella;
2017
Abstract
Starting from interaction rules based on two levels of stochasticity we study the influence of the microscopic dynamics on the macroscopic properties of vehicular flow. In particular, we study the qualitative structure of the resulting flux-density and speed-density diagrams for different choices of the desired speeds. We are able to recover multivalued diagrams as a result of the existence of a one-parameter family of stationary distributions, whose expression is analytically found by means of a Fokker-Planck approximation of the initial Boltzmann-type model.File | Dimensione | Formato | |
---|---|---|---|
Visconti_Multivalued-fundamental_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.61 MB
Formato
Adobe PDF
|
1.61 MB | Adobe PDF | Contatta l'autore |
Visconti_postprint_Multivalued-fundamental_2017.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.18 MB
Formato
Unknown
|
1.18 MB | Unknown |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.