Tailoring the morphology of macroporous structures remains one of the biggest challengesin material synthesis. Here, we present an innovative approach to fabricatecustommacroporous materials with pore size varying throughout the structure by up to an order of magnitudeusingon-demand reconfigurable microfluidics. We employavalve-based flow-focusing junction(vFF)in which the size of the orifice can be adjusted in real-time (within tens of milliseconds)to generate foams withon-linecontrolled bubble size. We use the junction tofabricatelayered and smoothly graded porous structureswith pore size varying in the range 80-800 μm.Additionally, to further exploit thecapacityof the technique, we mount vFF on top of an extrusion printer and 3D-print constructscharacterized by a predefined 3D geometryand controlled spatiallyvaryinginternal porous architecture, such asa model of a bone. The presented technology opensup new possibilities in macroporous material synthesis with potential applications ranging from tissue engineering to aerospace industry and construction.

3D printing of functionally graded porous materials using on-demand reconfigurable microfluidics / Costantini, Marco; Jaroszewicz, Jakub; Kozoń, Łukasz; Szlązak, Karol; Święszkowski, Wojciech; Garstecki, Piotr; Stubenrauch, Cosima; Barbetta, Andrea; Guzowski, Jan. - In: ANGEWANDTE CHEMIE. - ISSN 1521-3773. - 58:23(2019), pp. 7620-7625. [10.1002/anie.201900530]

3D printing of functionally graded porous materials using on-demand reconfigurable microfluidics

Marco Costantini
Primo
;
Andrea Barbetta;
2019

Abstract

Tailoring the morphology of macroporous structures remains one of the biggest challengesin material synthesis. Here, we present an innovative approach to fabricatecustommacroporous materials with pore size varying throughout the structure by up to an order of magnitudeusingon-demand reconfigurable microfluidics. We employavalve-based flow-focusing junction(vFF)in which the size of the orifice can be adjusted in real-time (within tens of milliseconds)to generate foams withon-linecontrolled bubble size. We use the junction tofabricatelayered and smoothly graded porous structureswith pore size varying in the range 80-800 μm.Additionally, to further exploit thecapacityof the technique, we mount vFF on top of an extrusion printer and 3D-print constructscharacterized by a predefined 3D geometryand controlled spatiallyvaryinginternal porous architecture, such asa model of a bone. The presented technology opensup new possibilities in macroporous material synthesis with potential applications ranging from tissue engineering to aerospace industry and construction.
2019
microfluidics; porous materials; layered porous materials; functionally graded materials; 3D printing
01 Pubblicazione su rivista::01a Articolo in rivista
3D printing of functionally graded porous materials using on-demand reconfigurable microfluidics / Costantini, Marco; Jaroszewicz, Jakub; Kozoń, Łukasz; Szlązak, Karol; Święszkowski, Wojciech; Garstecki, Piotr; Stubenrauch, Cosima; Barbetta, Andrea; Guzowski, Jan. - In: ANGEWANDTE CHEMIE. - ISSN 1521-3773. - 58:23(2019), pp. 7620-7625. [10.1002/anie.201900530]
File allegati a questo prodotto
File Dimensione Formato  
Costantini_3D-printing-functionally_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 7.35 MB
Formato Adobe PDF
7.35 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1280215
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 65
social impact