Fay’s trisecant formula shows that the Kummer variety of the Jacobian of a smooth projectivecurve has a four-dimensional family of trisecant lines. We study when these lines intersect thetheta divisor of the Jacobian and prove that the Gauss map of the theta divisor is constant onthese points of intersection, when defined. We investigate the relation between the Gauss mapand multisecant planes of the Kummer variety as well.

The Gauss map and secants of the Kummer variety / AUFFARTH II, ROBERT FREDERICK; Codogni, Giulio; Salvati Manni, Riccardo. - In: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6093. - 51:3(2019), pp. 489-500. [10.1112/blms.12244]

The Gauss map and secants of the Kummer variety

Salvati Manni, Riccardo
2019

Abstract

Fay’s trisecant formula shows that the Kummer variety of the Jacobian of a smooth projectivecurve has a four-dimensional family of trisecant lines. We study when these lines intersect thetheta divisor of the Jacobian and prove that the Gauss map of the theta divisor is constant onthese points of intersection, when defined. We investigate the relation between the Gauss mapand multisecant planes of the Kummer variety as well.
2019
trisecant formula, Kummer variety, Gauss map
01 Pubblicazione su rivista::01a Articolo in rivista
The Gauss map and secants of the Kummer variety / AUFFARTH II, ROBERT FREDERICK; Codogni, Giulio; Salvati Manni, Riccardo. - In: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6093. - 51:3(2019), pp. 489-500. [10.1112/blms.12244]
File allegati a questo prodotto
File Dimensione Formato  
Auffarth_The-Gauss-map_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 204.37 kB
Formato Adobe PDF
204.37 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1279561
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact