We study the asymptotic behavior of anomalous fractional diffusion processes in bad domains via the convergence of the associated energy forms.We introduce the associated Robin–Venttsel’ problems for the regional fractional Laplacian. We provide a suitable notion of fractional normal derivative on irregular sets via a fractional Green formula as well as existence and uniqueness results for the solution of the Robin–Venttsel’ problem by a semigroup approach. Submarkovianity and ultracontractivity properties of the associated semigroup are proved.

Convergence of fractional diffusion processes in extension domains / Creo, Simone; Lancia, Maria Rosaria; Vernole, Paola. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - (2020). [10.1007/s00028-019-00517-5]

Convergence of fractional diffusion processes in extension domains

Creo, Simone;Lancia, Maria Rosaria
;
Vernole, Paola
2020

Abstract

We study the asymptotic behavior of anomalous fractional diffusion processes in bad domains via the convergence of the associated energy forms.We introduce the associated Robin–Venttsel’ problems for the regional fractional Laplacian. We provide a suitable notion of fractional normal derivative on irregular sets via a fractional Green formula as well as existence and uniqueness results for the solution of the Robin–Venttsel’ problem by a semigroup approach. Submarkovianity and ultracontractivity properties of the associated semigroup are proved.
Fractional Laplacian; fractal domains; fractional green formula; m-convergence; semigroups; dynamical boundary conditions
01 Pubblicazione su rivista::01a Articolo in rivista
Convergence of fractional diffusion processes in extension domains / Creo, Simone; Lancia, Maria Rosaria; Vernole, Paola. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - (2020). [10.1007/s00028-019-00517-5]
File allegati a questo prodotto
File Dimensione Formato  
Creo_Convergence_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 603.37 kB
Formato Adobe PDF
603.37 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1278610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact