Formestane (4-hydroxyandrost-4-ene-3,17-dione, 4OH-AED) is an aromatase inhibitor prohibited in sports. In recent years, it has been demonstrated that it can also originate endogenously by the hydroxylation in C4 position of androstenedione. Thus, the use of isotope ratio mass spectrometry (IRMS) is mandatory according to the World Antidoping Agency (WADA) to discriminate endogenous from synthetic origin. In a previous work and after oral administrations of formestane (4OH-AED), the ratio between the main formestane metabolite (4α-hydroxyepiandrosterone; 4OH-EA) and formestane parent compound could help to identify the endogenous origin, avoiding unnecessary and costly IRMS confirmations. In the present work, we investigated whether the same criteria could also be applied after transdermal applications. Six volunteers were transdermally treated once with formestane. Urine samples were collected for 120 h postadministration and analyzed by gas chromatography coupled to mass spectrometry (GC-MS and GC-MS/MS). Formestane and its major metabolites were monitored. The kinetic profile of formestane and its main metabolites was found different between oral and transdermal application. A shift on the excretion of the metabolites compared to formestane itself that can be observed after the oral administration, is absent after the transdermal one. This makes that a simple criteria cannot be applied to differentiate the endogenous from the synthetic origin based on metabolic ratios. The ratio between 4-hydroxyepiandrosterone and 4-hydroxyandrosterone (4OH-A) can be used to differentiate the route of administration. Ratios higher than one (4OH-EA/4OH-A > 1) are diagnostic of an oral administration. This allows to correctly interpret the 4OH-EA/4OH-AED ratio as proposed in our previous investigation. The results of this work demonstrate that the use of appropriate biomarkers (metabolic ratios) helps to reach correct conclusions without using complex and costly instrumentation approaches.

Metabolism of formestane in humans: identification of urinary biomarkers for antidoping analysis / de la Torre, X; Martinez Brito, D; Colamonici, C; Parr, M K; Botrè, F. - In: STEROIDS. - ISSN 0039-128X. - 146:(2019), pp. 34-42. [10.1016/j.steroids.2019.03.005]

Metabolism of formestane in humans: identification of urinary biomarkers for antidoping analysis

Botrè, F
2019

Abstract

Formestane (4-hydroxyandrost-4-ene-3,17-dione, 4OH-AED) is an aromatase inhibitor prohibited in sports. In recent years, it has been demonstrated that it can also originate endogenously by the hydroxylation in C4 position of androstenedione. Thus, the use of isotope ratio mass spectrometry (IRMS) is mandatory according to the World Antidoping Agency (WADA) to discriminate endogenous from synthetic origin. In a previous work and after oral administrations of formestane (4OH-AED), the ratio between the main formestane metabolite (4α-hydroxyepiandrosterone; 4OH-EA) and formestane parent compound could help to identify the endogenous origin, avoiding unnecessary and costly IRMS confirmations. In the present work, we investigated whether the same criteria could also be applied after transdermal applications. Six volunteers were transdermally treated once with formestane. Urine samples were collected for 120 h postadministration and analyzed by gas chromatography coupled to mass spectrometry (GC-MS and GC-MS/MS). Formestane and its major metabolites were monitored. The kinetic profile of formestane and its main metabolites was found different between oral and transdermal application. A shift on the excretion of the metabolites compared to formestane itself that can be observed after the oral administration, is absent after the transdermal one. This makes that a simple criteria cannot be applied to differentiate the endogenous from the synthetic origin based on metabolic ratios. The ratio between 4-hydroxyepiandrosterone and 4-hydroxyandrosterone (4OH-A) can be used to differentiate the route of administration. Ratios higher than one (4OH-EA/4OH-A > 1) are diagnostic of an oral administration. This allows to correctly interpret the 4OH-EA/4OH-AED ratio as proposed in our previous investigation. The results of this work demonstrate that the use of appropriate biomarkers (metabolic ratios) helps to reach correct conclusions without using complex and costly instrumentation approaches.
2019
Antidoping; Formestane; mass spectrometry; metabolism; route of administration
01 Pubblicazione su rivista::01a Articolo in rivista
Metabolism of formestane in humans: identification of urinary biomarkers for antidoping analysis / de la Torre, X; Martinez Brito, D; Colamonici, C; Parr, M K; Botrè, F. - In: STEROIDS. - ISSN 0039-128X. - 146:(2019), pp. 34-42. [10.1016/j.steroids.2019.03.005]
File allegati a questo prodotto
File Dimensione Formato  
Botrè_Metabolism-of-formestane.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 988.04 kB
Formato Adobe PDF
988.04 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1277608
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact