Behaviorally and pathologically relevant cortico-thalamo-cortical oscillations are driven by diverse interacting cell-intrinsic and synaptic processes. However, the mechanism that gives rise to the paroxysmal oscillations of absence seizures (ASs) remains unknown. Here we report that, during ASs in behaving animals, cortico-thalamic excitation drives thalamic firing by preferentially eliciting tonic rather than T-type Ca 2+ channel (T-channel)-dependent burst firing in thalamocortical (TC) neurons and by temporally framing thalamic output via feedforward reticular thalamic (NRT)-to-TC neuron inhibition. In TC neurons, overall ictal firing was markedly reduced and bursts rarely occurred. Moreover, blockade of T-channels in cortical and NRT neurons suppressed ASs, but such blockade in TC neurons had no effect on seizures or on ictal thalamic output synchrony. These results demonstrate ictal bidirectional cortico-thalamic communications and provide the first mechanistic understanding of cortico-thalamo-cortical network firing dynamics during ASs in behaving animals.

Cortical drive and thalamic feed-forward inhibition control thalamic output synchrony during absence seizures / Mccafferty, Cian; David, François; Venzi, Marcello; Lőrincz, Magor L; Delicata, Francis; Atherton, Zoe; Recchia, GREGORIO EGIDIO; Orban, Gergely; Lambert, Régis C; Di Giovanni, Giuseppe; Leresche, Nathalie; Crunelli, Vincenzo. - In: NATURE NEUROSCIENCE. - ISSN 1097-6256. - 21:5(2018), pp. 744-756. [10.1038/s41593-018-0130-4]

Cortical drive and thalamic feed-forward inhibition control thalamic output synchrony during absence seizures

RECCHIA, GREGORIO EGIDIO
Membro del Collaboration Group
;
2018

Abstract

Behaviorally and pathologically relevant cortico-thalamo-cortical oscillations are driven by diverse interacting cell-intrinsic and synaptic processes. However, the mechanism that gives rise to the paroxysmal oscillations of absence seizures (ASs) remains unknown. Here we report that, during ASs in behaving animals, cortico-thalamic excitation drives thalamic firing by preferentially eliciting tonic rather than T-type Ca 2+ channel (T-channel)-dependent burst firing in thalamocortical (TC) neurons and by temporally framing thalamic output via feedforward reticular thalamic (NRT)-to-TC neuron inhibition. In TC neurons, overall ictal firing was markedly reduced and bursts rarely occurred. Moreover, blockade of T-channels in cortical and NRT neurons suppressed ASs, but such blockade in TC neurons had no effect on seizures or on ictal thalamic output synchrony. These results demonstrate ictal bidirectional cortico-thalamic communications and provide the first mechanistic understanding of cortico-thalamo-cortical network firing dynamics during ASs in behaving animals.
2018
Action potentials; animals; calcium channels, T-type; cerebral cortex; computer simulation; electroencephalography; feedback, physiological; male; neural pathways; neurons; rats, wistar; recruitment neurophysiological; seizures; thalamus
01 Pubblicazione su rivista::01a Articolo in rivista
Cortical drive and thalamic feed-forward inhibition control thalamic output synchrony during absence seizures / Mccafferty, Cian; David, François; Venzi, Marcello; Lőrincz, Magor L; Delicata, Francis; Atherton, Zoe; Recchia, GREGORIO EGIDIO; Orban, Gergely; Lambert, Régis C; Di Giovanni, Giuseppe; Leresche, Nathalie; Crunelli, Vincenzo. - In: NATURE NEUROSCIENCE. - ISSN 1097-6256. - 21:5(2018), pp. 744-756. [10.1038/s41593-018-0130-4]
File allegati a questo prodotto
File Dimensione Formato  
Recchia_Cortical-drive.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.33 MB
Formato Adobe PDF
3.33 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1275039
Citazioni
  • ???jsp.display-item.citation.pmc??? 41
  • Scopus 82
  • ???jsp.display-item.citation.isi??? 79
social impact