We discuss the sharp interface limit of the action functional associated with either the Glauber dynamics for Ising systems with Kac potentials or the Glauber+Kawasaki process. The corresponding limiting functionals, for which we provide explicit formulae of the mobility and transport coefficients, describe the large deviation asymptotics with respect to the mean curvature flow.

On Large Deviations of Interface Motions for Statistical Mechanics Models / Bertini, Lorenzo; Buttà, Paolo; Pisante, Adriano. - In: ANNALES HENRI POINCARE'. - ISSN 1424-0637. - 20:6(2019), pp. 1785-1821. [10.1007/s00023-019-00790-7]

On Large Deviations of Interface Motions for Statistical Mechanics Models

Bertini, Lorenzo;Buttà, Paolo
;
Pisante, Adriano
2019

Abstract

We discuss the sharp interface limit of the action functional associated with either the Glauber dynamics for Ising systems with Kac potentials or the Glauber+Kawasaki process. The corresponding limiting functionals, for which we provide explicit formulae of the mobility and transport coefficients, describe the large deviation asymptotics with respect to the mean curvature flow.
2019
Statistical and nonlinear physics; nuclear and high energy physics; mathematical physics
01 Pubblicazione su rivista::01a Articolo in rivista
On Large Deviations of Interface Motions for Statistical Mechanics Models / Bertini, Lorenzo; Buttà, Paolo; Pisante, Adriano. - In: ANNALES HENRI POINCARE'. - ISSN 1424-0637. - 20:6(2019), pp. 1785-1821. [10.1007/s00023-019-00790-7]
File allegati a questo prodotto
File Dimensione Formato  
Bertini_On-large-deviations_2019.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 414.16 kB
Formato Adobe PDF
414.16 kB Adobe PDF   Contatta l'autore
Bertini_preprint_On-large-deviations_2019.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 400.98 kB
Formato Unknown
400.98 kB Unknown

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1274622
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact