This paper presents REWOrD, an approach to compute semantic relatedness between entities in the Web of Data representing real word concepts. REWOrD exploits the graph nature of RDF data and the SPARQL query language to access this data. Through simple queries, REWOrD constructs weighted vectors keeping the informativeness of RDF predicates used to make statements about the entities being compared. The most informative path is also considered to further refine informativeness. Relatedness is then computed by the cosine of the weighted vectors. Differently from previous approaches based on Wikipedia, REWOrD does not require any preprocessing or custom data transformation. Indeed, it can leverage whatever RDF knowledge base as a source of background knowledge. We evaluated REWOrD in different settings by using a new dataset of real word entities and investigate its flexibility. As compared to related work on classical datasets, REWOrD obtains comparable results while, on one side, it avoids the burden of preprocessing and data transformation and, on the other side, it provides more flexibility and applicability in a broad range of domains. Copyright © 2012, Association for the Advancement of Artificial Intelligence. All rights reserved.
REWOrD: Semantic relatedness in the web of data / Pirró, Giuseppe. - (2012), pp. 129-135. (Intervento presentato al convegno 26th Conference on Artificial Intelligence tenutosi a Toronto).
REWOrD: Semantic relatedness in the web of data
Pirró, Giuseppe
2012
Abstract
This paper presents REWOrD, an approach to compute semantic relatedness between entities in the Web of Data representing real word concepts. REWOrD exploits the graph nature of RDF data and the SPARQL query language to access this data. Through simple queries, REWOrD constructs weighted vectors keeping the informativeness of RDF predicates used to make statements about the entities being compared. The most informative path is also considered to further refine informativeness. Relatedness is then computed by the cosine of the weighted vectors. Differently from previous approaches based on Wikipedia, REWOrD does not require any preprocessing or custom data transformation. Indeed, it can leverage whatever RDF knowledge base as a source of background knowledge. We evaluated REWOrD in different settings by using a new dataset of real word entities and investigate its flexibility. As compared to related work on classical datasets, REWOrD obtains comparable results while, on one side, it avoids the burden of preprocessing and data transformation and, on the other side, it provides more flexibility and applicability in a broad range of domains. Copyright © 2012, Association for the Advancement of Artificial Intelligence. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.