We study Moser–Trudinger type functionals in the presence of singular potentials. In particular we propose a proof of a singular Carleson–Chang type estimate by means of Onofri’s inequality for the unit disk in R2. Moreover we extend the analysis of Adimurthi (2004) and Csato and Roy (2015) considering Adimurthi–Druet type functionals on compact surfaces with conical singularities and discussing the existence of extremals for such functionals.

Extremal functions for singular Moser-Trudinger embeddings / Iula, Stefano; Mancini, Gabriele. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 156(2017), pp. 215-248. [10.1016/j.na.2017.02.029]

Extremal functions for singular Moser-Trudinger embeddings

Mancini, Gabriele
2017

Abstract

We study Moser–Trudinger type functionals in the presence of singular potentials. In particular we propose a proof of a singular Carleson–Chang type estimate by means of Onofri’s inequality for the unit disk in R2. Moreover we extend the analysis of Adimurthi (2004) and Csato and Roy (2015) considering Adimurthi–Druet type functionals on compact surfaces with conical singularities and discussing the existence of extremals for such functionals.
File allegati a questo prodotto
File Dimensione Formato  
Extremal functions for singular Moser–Trudinger embeddings.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 828.61 kB
Formato Adobe PDF
828.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/1272738
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact