We study the blow-up behavior of minimizing sequences for the singular Moser–Trudinger functional on compact surfaces. Assuming non-existence of minimum points, we give an estimate for the infimum value of the functional. This result can be applied to give sharp Onofri-type inequalities on the sphere in the presence of at most two singularities.

Onofri-Type inequalities for singular liouville equations / Mancini, Gabriele. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 26:2(2016), pp. 1202-1230. [10.1007/s12220-015-9589-3]

Onofri-Type inequalities for singular liouville equations

Mancini, Gabriele
2016

Abstract

We study the blow-up behavior of minimizing sequences for the singular Moser–Trudinger functional on compact surfaces. Assuming non-existence of minimum points, we give an estimate for the infimum value of the functional. This result can be applied to give sharp Onofri-type inequalities on the sphere in the presence of at most two singularities.
File allegati a questo prodotto
File Dimensione Formato  
Onofri.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 568.37 kB
Formato Adobe PDF
568.37 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/1272727
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact