In this paper we establish blow-up results and lifespan estimates for semilinear wave equations with scattering damping and negative mass term for subcritical power, which are the same as that of the corresponding problem without mass term, and also the same as that of the corresponding problem without both damping and mass term. For this purpose, we have to use the comparison argument twice, due to the damping and mass term, in additional to a key multiplier. Finally, we get the desired results by an iteration argument.
Wave-like blow-up for semilinear wave equations with scattering damping and negative mass term / Lai, Ning-An; Schiavone, NICO MICHELE; Takamura, Hiroyuki. - (2019), pp. 217-240. - TRENDS IN MATHEMATICS. [10.1007/978-3-030-10937-0_8].
Wave-like blow-up for semilinear wave equations with scattering damping and negative mass term
SCHIAVONE, NICO MICHELE;
2019
Abstract
In this paper we establish blow-up results and lifespan estimates for semilinear wave equations with scattering damping and negative mass term for subcritical power, which are the same as that of the corresponding problem without mass term, and also the same as that of the corresponding problem without both damping and mass term. For this purpose, we have to use the comparison argument twice, due to the damping and mass term, in additional to a key multiplier. Finally, we get the desired results by an iteration argument.File | Dimensione | Formato | |
---|---|---|---|
Schiavone_Blow-up-preprint.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
174.2 kB
Formato
Adobe PDF
|
174.2 kB | Adobe PDF | |
Schiavone_Blow-up-postprint.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
100.38 kB
Formato
Adobe PDF
|
100.38 kB | Adobe PDF | Contatta l'autore |
Schiavone_Blow-up-frontespizio-e-indice.pdf
accesso aperto
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
128.37 kB
Formato
Adobe PDF
|
128.37 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.