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Abstract

In this paper we establish blow-up results and lifespan estimates for semilinear

wave equations with scattering damping and negative mass term for subcritical

power, which is the same as that of the corresponding problem without mass term,

and also the same as that of the corresponding problem without both damping and

mass term. For this purpose, we have to use the comparison argument twice, due

to the damping and mass term, in additional to a key multiplier. Finally, we get

the desired results by an iteration argument.

1 Introduction

In this paper, we consider the Cauchy problem for semilinear wave equations with scat-
tering damping and negative mass term




utt −∆u+

µ1

(1 + t)β
ut −

µ2

(1 + t)α+1
u = |u|p, in Rn × [0,∞),

u(x, 0) = εf(x), ut(x, 0) = εg(x), x ∈ Rn,
(1.1)

where µ1, µ2 > 0, α > 1, β > 1, n ∈ N and ε > 0 is a “small” parameter.
We call the term µ1ut/(1+ t)β (β > 1) scattering damping, due to the reason that the

solution of the following Cauchy problem



u0tt −∆u0 +

µ

(1 + t)β
u0t = 0, in Rn × [0,∞),

u0(x, 0) = u1(x), u0t (x, 0) = u2(x), x ∈ Rn,
(1.2)
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scatters to that of the free wave equation when β > 1 and t → ∞. In fact, according to
the works of Wirth [22, 23, 24], we may classify the damping for different values of β into
four cases, as shown in the next table.

Range of β Classification

β ∈ (−∞,−1) overdamping
β ∈ [−1, 1) effective

β = 1
scaling invariant
if µ ∈ (0, 1) ⇒ non-effective

β ∈ (1,∞) scattering

If we come to the nonlinear problem with power nonlinearity, thus





utt −∆u+

µ

(1 + t)β
ut = |u|p, in Rn × [0,∞),

u(x, 0) = u1(x), ut(x, 0) = u2(x), x ∈ Rn,
(1.3)

we want to determine the long time behaviour of the solution according to the different
value of p, n and even µ. Ikeda and Wakasugi [9] proved global existence for (1.3) for all
p > 1 when β < −1. For β ∈ [−1, 1), due to the work [3, 12, 14, 21, 7, 5, 6], we know
that problem (1.3) admits a critical power pF (n) := 1+ 2/n (Fujita power), which means
that for p ∈ (1, pF (n)] the solution will blow up in a finite time, while for p ∈ (pF (n),∞)
we have global existence. Obviously, in this case the critical is exactly the same as that
of the Cauchy problem of semilinear heat equation

ut −∆u = up,

and so we call it admits “heat-like” behaviour.
For the case β = 1 in (1.3), we say that the damping is scale invariant, due to the

reason that the equation in the corresponding linear problem (1.2) is invariant under the
following scaling transformation

ũ0(x, t) := u0(σx, σ(1 + t)− 1), σ > 0.

It is a bit sophisticated for the scale invariant nonlinear problem (1.3), since the size of
the positive constant µ will also have an effect on the long time behaviour of the solution.
Generally speaking, according to the known results ([1, 2, 4, 20, 10, 8, 18, 19]), it is
believed that if µ is large enough, then the critical power is related to the Fujita power,
while if µ is relatively small, then the critical power is related to the Strauss power, i.e.
pS(n), which is denoted to be the positive root of the following quadratic equation

γ(p, n) := 2 + (n+ 1)p− (n− 1)p2 = 0,

and which is also the critical power of the small data Cauchy problem of the semilinear
wave equation

utt −∆u = |u|p.
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It means that for relatively small µ we have “wave-like” behaviour. Unfortunately, we are
not clear of the exact threshold determined by the value µ between the “heat-like” and
“wave-like” phenomenon till now.

For the scattering case (β > 1), one expects that problem (1.3) admits the long
time behaviour as that of the corresponding problem without damping. In [11], Lai and
Takamura obtained the blow-up results for

1 < p <

{
pS(n) for n ≥ 2,

∞ for n = 1

and the upper bound of the lifespan estimate

T ≤ Cε−2p(p−1)/γ(p,n).

What is more, when n = 1, 2 and
∫

Rn

g(x)dx 6= 0,

they established an improved upper bound of the lifespan for 1 < p < 2, n = 2 and p > 1,
n = 1. However, it remains to determine the exact critical power for (1.3) with β > 1.

Recently, the small data Cauchy problem for semilinear wave equation with scale-
invariant damping and mass and power non-linearity, i.e.,




utt −∆u+

µ1

1 + t
ut +

µ2
2

(1 + t)2
u = |u|p, in Rn × [0,∞),

u(x, 0) = u1(x), ut(x, 0) = u2(x), x ∈ Rn,

(1.4)

attracts more and more attention. Denote

δ := (µ1 − 1)2 − 4µ2
2. (1.5)

Then in [13] and [15] a blow-up result was established for

1 < p ≤ pF

(
n +

µ1 − 1−
√
δ

2

)

assuming δ ≥ 0, by using two different approaches. Furthermore, in [13] they improved
the result for δ = 1 to

1 < p ≤ max
{
pS(n + µ1), pF

(
n+

µ1

2
− 1
)}

.

Recently, Palmieri and Reissig [16] generalized the blow-up result for n ≥ 1 and δ ∈ (0, 1]
to the following power:





p < pµ1,µ2(n) := max
{
pS(n + µ1), pF

(
n+ µ1

2
−

√
δ
2

)}
,

p = pµ1,µ2(n) = pF

(
n+ µ1

2
−

√
δ
2

)
,

p = pµ1,µ2(n) = pS(n+ µ1), for n = 2.
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We note that a transform by v := (1 + t)µ1/2u changes the equation in (1.4) into

vtt −∆v +
1− δ

4(1 + t)2
v = |v|p,

so that the assumption of δ ∈ (0, 1] implies the non-negativeness of the mass term in this
equation.

In this paper, we are going to study the small data Cauchy problem of semilinear
wave equations with power nonlinearity, scattering damping and mass term with negative
sign, thus, problem (1.1). Blow-up results and lifespan estimates will be established for
1 < p < pS(n), which are the same as that in the work [11]. We could say that we
experience a double phenomenon of scattering, due to the damping term and the mass
term. For the proof, we will borrow the idea from [11], by introducing a key multiplier
to absorb the damping term and establishing an iteration frame. However, we have to
deal with the mass term. Due to the negative sign, we use a comparison argument to
eliminate the effect from the mass term. Although the calculations in this work hold for
any mass exponent α ∈ R, we suppose that it satisfies α > 1 because otherwise we have
shorter lifespan estimates due to the effect of the negative mass term. This analysis will
appear in our forthcoming paper.

2 Main Result

Before the statement of our main results, we first denote the energy and weak solutions
of problem (1.1).

Definition 1. We say that u is an energy solution of (1.1) over [0, T ) if

u ∈ C([0, T ), H1(Rn)) ∩ C1([0, T ), L2(Rn)) ∩ Lp
loc(R

n × (0, T )) (2.1)

satisfies u(x, 0) = εf(x) in H1(Rn) and

∫

Rn

ut(x, t)φ(x, t)dx−
∫

Rn

εg(x)φ(x, 0)dx

+

∫ t

0

ds

∫

Rn

{−ut(x, s)φt(x, s) +∇u(x, s) · ∇φ(x, s)} dx

+

∫ t

0

ds

∫

Rn

µ1

(1 + s)β
ut(x, s)φ(x, s)dx−

∫ t

0

ds

∫

Rn

µ2

(1 + s)α+1
u(x, s)φ(x, s)

=

∫ t

0

ds

∫

Rn

|u(x, s)|pφ(x, s)dx

(2.2)

with any test function φ ∈ C∞
0 (Rn × [0, T )) for t ∈ [0, T ).

Employing the integration by part in the above equality and letting t → T , we got
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the definition of the weak solution of (1.1), that is

∫

Rn×[0,T )

u(x, s)

{
φtt(x, s)−∆φ(x, s)− ∂

∂s

(
µ1

(1 + s)β
φ(x, s)

)

− µ2

(1 + s)α+1
φ(x, s)

}
dxds

=

∫

Rn

µ1εf(x)φ(x, 0)dx−
∫

Rn

εf(x)φt(x, 0)dx+

∫

Rn

εg(x)φ(x, 0)dx

+

∫

Rn×[0,T )

|u(x, s)|pφ(x, s)dxds.

(2.3)

Definition 2. As in the introduction, set

γ(p, n) := 2 + (n + 1)p− (n− 1)p2

and, for n ≥ 2, define pS(n) the positive root of the quadratic equation γ(p, n) = 0, the
so-called Strauss exponent, that is

pS(n) =
n+ 1 +

√
n2 + 10n− 7

2(n− 1)
.

Note that if n = 1, then γ(p, 1) = 2 + 2p and we can set pS(1) := +∞.

Now we announce our main results.

Theorem 1. Let n = 1 and p > 1, or n ≥ 2 and 1 < p < pS(n). Assume that both
f ∈ H1(Rn) and g ∈ L2(Rn) are non-negative, and at least one of them does not vanish
identically. Suppose that u is an energy solution of (1.1) on [0, T ) that satisfies

supp u ⊂ {(x, t) ∈ Rn × [0,∞) : |x| ≤ t+R} (2.4)

with some R ≥ 1. Then, there exists a constant ε0 = ε0(f, g, n, p, µ1, β, R) > 0 such that
T has to satisfy

T ≤ Cε−2p(p−1)/γ(p,n) (2.5)

for 0 < ε ≤ ε0, where C is a positive constant independent of ε.

In low dimensions (n = 1, 2), with some additional hypothesis, we may have improve-
ments on the lifespan estimates as follows.

Theorem 2. Let n = 2 and 1 < p < 2. Assume that both f ∈ H1(R2) and g ∈ L2(R2)
are non-negative and that g does not vanish identically. Then the lifespan estimate (2.5)
is replaced by

T ≤ Cε−(p−1)/(3−p). (2.6)

Theorem 3. Let n = 1 and p > 1. Assume that both f ∈ H1(R1) and g ∈ L2(R1) are
non-negative and that g does not vanish identically. Then the lifespan estimate (2.5) is
replaced by

T ≤ Cε−(p−1)/2. (2.7)
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Theorem 4. Let n = p = 2. Suppose that α ≤ β and

µ2 ≥





βµ1

2
if α = β,

βµ1

2
β−1

2β−α−1

(
4
µ2
1

µ2

β−α
β−1

) β−α
2β−α−1

if α < β.
(2.8)

Assume that f ≡ 0 and g ∈ C2(R2) is non-negative and does not vanish identically.
Suppose also that u is a classical solution of (1.1) on [0, T ) with the support property
(2.4). Then, T satisfies

T ≤ Ca(ε) (2.9)

where a = a(ε) is a number satisfying

a2ε2 log(1 + a) = 1. (2.10)

Remark 2.1. In Theorem 1, we require that at least one of the initial data does not
vanish identically, which is weaker than that in the corresponding result (Theorem 2.1) in
[11].

Remark 2.2. Observe that:

• (2.6) is stronger than (2.5) by the fact that 1 < p < 2 is equivalent to

p− 1

3− p
<

2p(p− 1)

γ(p, 2)
;

• (2.7) is stronger than (2.5) by the fact that p > 1 is equivalent to

p− 1

2
<

2p(p− 1)

γ(p, 1)
;

• (2.9) is stronger than (2.5) by the fact that when n = p = 2

a(ε) < ε−1 = ε−2·2(2−1)/γ(2,2)

for sufficiently small ε.

3 Lower bound for derivative of the functional

Following the idea in [11], we introduce the multiplier

m(t) := exp

(
µ1

(1 + t)1−β

1− β

)
. (3.1)

Clearly
1 ≥ m(t) ≥ m(0) > 0 for t ≥ 0. (3.2)

Moreover, let us define the functional

F0(t) :=

∫

Rn

u(x, t)dx,

6



then

F0(0) = ε

∫

Rn

f(x)dx, F ′
0(0) = ε

∫

Rn

g(x)dx

are non-negative due to the hypothesis of positiveness on the initial data. Our final target
is to establish a lower bound for F0(t).

Let us start finding the lower bound of the derivative of the functional, i.e., F ′
0(t).

Choosing the test function φ = φ(x, s) in (2.2) to satisfy φ ≡ 1 in {(x, s) ∈ Rn × [0, t] :
|x| ≤ s+R}, we get

∫

Rn

ut(x, t)dx−
∫

Rn

ut(x, 0)dx+

∫ t

0

ds

∫

Rn

µ1

(1 + s)β
ut(x, s)dx

=

∫ t

0

∫

Rn

µ2

(1 + s)α+1
u(x, s)dx+

∫ t

0

ds

∫

Rn

|u(x, s)|pdx,

which yields by taking derivative with respect to t

F ′′
0 (t) +

µ1

(1 + t)β
F ′
0(t) =

µ2

(1 + t)α+1
F0(t) +

∫

Rn

|u(x, t)|pdx. (3.3)

Here we note that (3.3) can be established by regularity assumption on the solution,
u ∈ C([0, T ), H1(Rn)), with a standard imbedding theorem and the compactness of the
support in (2.4) and the fact that pS(n) < 2n/(n− 2) for n ≥ 3. Multiplying both sides
of (3.3) with m(t) yields

{m(t)F ′
0(t)}

′
= m(t)

µ2

(1 + t)α+1
F0(t) +m(t)

∫

Rn

|u(x, t)|pdx. (3.4)

Integrating the above equality over [0, t] we get

F ′
0(t) =

m(0)

m(t)
F ′
0(0) +

1

m(t)

∫ t

0

m(s)
µ2

(1 + s)α+1
F0(s)ds

+
1

m(t)

∫ t

0

m(s)ds

∫

Rn

|u(x, s)|pdx.
(3.5)

To get the lower bound for F ′
0, we need the positiveness of F0, and this can be obtained

by a comparison argument. However, since we assume that at least one of the initial data
does not vanish identically, we have to consider the following two cases.

Case 1: f ≥ 0( 6≡ 0), g ≥ 0. This means that F0(0) > 0, F ′
0(0) ≥ 0. By the continuity

of F0, it is positive at least for small time. Suppose that t0 is the smallest zero point of
F0, such that F0 > 0 in [0, t0). Then, integrating (3.5) over this interval we have

0 = F0(t0) = F0(0) +m(0)F ′
0(0)

∫ t0

0

ds

m(s)

+

∫ t0

0

ds

m(s)

∫ s

0

m(r)
µ2

(1 + r)α+1
F0(r)dr

+

∫ t0

0

ds

m(s)

∫ s

0

m(r)dr

∫

Rn

|u(x, r)|pdx > 0,

7



which leads to a contradiction, and hence F (t) is positive all the time.
Case 2: f ≥ 0, g ≥ 0( 6≡ 0). This imply that F0(0) ≥ 0, F ′

0(0) > 0. We apply
the same argument as in the first case to F ′

0. Suppose that t0 is the smallest zero point
of F ′

0, such that F ′
0 is positive on the interval [0, t0). Therefore F0 is strictly monotone

increasing on the same interval, and hence positive due to F0(0) ≥ 0. Letting t = t0
in (3.5), we again come to a contradiction. Therefore F ′

0 is always strictly positive, and
hence F0(t) > 0 holds for all t > 0.

Coming back to (3.5), using the positivity of F0, the boundedness of m(t) and that
F ′
0(0) ≥ 0, we obtain the lower bound for F ′

0 as

F ′
0(t) ≥ m(0)

∫ t

0

∫

Rn

|u(x, s)|pdxds for t ≥ 0. (3.6)

4 Lower bound for the weighted functional

Set

F1(t) :=

∫

Rn

u(x, t)ψ1(x, t)dx,

where ψ1 is the test function introduced by Yordanov and Zhang [25]

ψ1(x, t) := e−tφ1(x), φ1(x) :=





∫

Sn−1

ex·ωdSω for n ≥ 2,

ex + e−x for n = 1.

Lemma 1 (Inequality (2.5) of Yordanov and Zhang [25]).
∫

|x|≤t+R

[ψ1(x, t)]
p/(p−1) dx ≤ C(1 + t)(n−1){1−p/(2(p−1))}, (4.1)

where C1 = C1(n, p, R) > 0.

Next we aim to establish the lower bound for F1. From the definition of energy solution
(2.2), we have that

d

dt

∫

Rn

ut(x, t)φ(x, t)dx+

∫

Rn

{−ut(x, t)φt(x, t)− u(x, t)∆φ(x, t)} dx

+

∫

Rn

µ1

(1 + t)β
ut(x, t)φ(x, t)dx−

∫

Rn

µ2

(1 + t)α+1
u(x, t)φ(x, t)dx

=

∫

Rn

|u(x, t)|pφ(x, t)dx.

Multiplying both sides of the above equality with m(t) yields

d

dt

{
m(t)

∫

Rn

ut(x, t)φ(x, t)dx

}

+m(t)

∫

Rn

{−ut(x, t)φt(x, t)− u(x, t)∆φ(x, t)} dx

= m(t)

∫

Rn

µ2

(1 + t)α+1
u(x, t)φ(x, t)dx+m(t)

∫

Rn

|u(x, t)|pφ(x, t)dx,
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integrating which over [0, t] yields

m(t)

∫

Rn

ut(x, t)φ(x, t)dx−m(0)ε

∫

Rn

g(x)φ(x, 0)dx

−
∫ t

0

ds

∫

Rn

m(s)ut(x, s)φt(x, s)dx−
∫ t

0

ds

∫

Rn

m(s)u(x, s)∆φ(x, s)

=

∫ t

0

ds

∫

Rn

m(s)
µ2

(1 + s)α+1
u(x, s)φ(x, s)dx

+

∫ t

0

ds

∫

Rn

m(s)|u(x, s)|pφ(x, s)dx.

By integration by part in the above equality we have

m(t)

∫

Rn

ut(x, t)φ(x, t)dx−m(0)ε

∫

Rn

g(x)φ(x, 0)dx

−m(t)

∫

Rn

u(x, t)φt(x, t)dx+m(0)ε

∫

Rn

f(x)φt(x, 0)dx

+

∫ t

0

ds

∫

Rn

m(s)
µ1

(1 + s)β
u(x, s)φt(x, s)dx

+

∫ t

0

ds

∫

Rn

m(s)u(x, s)φtt(x, s)dx−
∫ t

0

ds

∫

Rn

m(s)u(x, s)∆φ(x, s)

=

∫ t

0

ds

∫

Rn

m(s)
µ2

(1 + s)α+1
u(x, s)φ(x, s)dx

+

∫ t

0

ds

∫

Rn

m(s)|u(x, s)|pφ(x, s)dx.

(4.2)

Setting
φ(x, t) = ψ1(x, t) = e−tφ1(x) on supp u,

then we have
φt = −φ, φtt = ∆φ on supp u.

Hence we obtain from (4.2)

m(t){F ′
1(t) + 2F1(t)} = m(0)ε

∫

Rn

{f(x) + g(x)}φ1(x)dx

+

∫ t

0

m(s)

{
µ1

(1 + s)β
+

µ2

(1 + s)α+1

}
F1(s)ds

+

∫ t

0

ds

∫

Rn

m(s)|u(x, s)|pdx,

which implies

F ′
1(t) + 2F1(t) ≥

m(0)

m(t)
Cf,gε+

1

m(t)

∫ t

0

m(s)

{
µ1

(1 + s)β
+

µ2

(1 + s)α+1

}
F1(s)ds

≥ m(0)Cf,gε+

∫ t

0

m(s)

{
µ1

(1 + s)β
+

µ2

(1 + s)α+1

}
F1(s)ds,

(4.3)
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where

Cf,g :=

∫

Rn

{f(x) + g(x)}φ1(x)dx > 0.

Integrating the above inequality over [0, t] after a multiplication with e2t, we get

e2tF1(t) ≥ F1(0) +m(0)Cf,gε

∫ t

0

e2sds

+

∫ t

0

e2sds

∫ s

0

m(r)

{
µ1

(1 + r)β
+

µ2

(1 + r)α+1

}
F1(r)dr.

(4.4)

Applying a comparison argument, we have that F1(t) > 0 for t > 0. Again, we should
consider two cases due to the hypothesis on the data.

Case 1: f ≥ 0( 6≡ 0), g ≥ 0. In this case F1(0) = Cf,0ε > 0. The continuity of F1

yields that F1(t) > 0 for small t > 0. If there is the nearest zero point t0 to t = 0 of F1,
then (4.4) gives a contradiction at t0.

Case 2: f ≥ 0, g ≥ 0( 6≡ 0). If f 6≡ 0, we are in the previous case. If f ≡ 0, then
F1(0) = 0, F ′

1(0) = C0,gε > 0. By the continuity of F ′
1, we have that F

′
1 is strictly positive

for small t, hence there exists some t1 > 0 such that F ′
1 > 0 over [0, t1]. Then F1 is

strictly monotone increasing on this interval, and then strictly positive on (0, t1]. Now,
suppose by contradiction that t2(> t1) is the smallest zero point of F1, and so F1 > 0
on (0, t2). Then we claim that F ′

1(t2) ≤ 0. If not, by continuity, F ′
1 is strictly positive in

a small interval (t3, t2] for some time t3 satisfying 0 < t3 < t2. This implies that F1 is
strictly monotone increasing on (t3, t2] and then negative due to the fact that F1(t2) = 0,
a contradiction. We then verify the claim (F ′

1(t2) ≤ 0). Letting t = t2 in the inequality
(4.3), noting the fact that F1(t2) = 0, F ′

1(t2) ≤ 0 and F1 ≥ 0 on [0, t2], we come to a
contradiction. And we show that F1 > 0 for t > 0 also in this case.

Therefore, coming back to (4.4), we may ignore the last term, and then we have

e2tF1(t) ≥ F1(0) +m(0)Cf,gε

∫ t

0

e2sds ≥ 1

2
m(0)Cf,gε(e

2t − 1),

from which, finally, we get the lower bound of F1(t) in the form

F1(t) >
1− e−2

2
m(0)Cf,gε for t ≥ 1. (4.5)

Remark 4.1. Note that we have to cut off the time because f can vanish and so F1(0)
can be equal to 0, due to our assumption on the data. If f is not identically equal to zero,
then the lower bound of F1, i.e. (4.5), holds for all t ≥ 0.

5 Lower bound for the functional

By Hölder inequality and using the compact support of the solution (2.4), we have

∫

Rn

|u(x, t)|pdx ≥ C2(1 + t)−n(p−1)|F0(t)|p for t ≥ 0, (5.1)
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where C2 = C2(n, p, R) > 0. Plugging this inequality into (3.6) and then integrating it
over [0, t], we have

F0(t) ≥ C3

∫ t

0

ds

∫ s

0

(1 + r)−n(p−1)F0(r)
pdr for t ≥ 0, (5.2)

where C3 := C2m(0) > 0.
Moreover, by Hölder inequality, Lemma 1 and estimate (4.5), we get
∫

Rn

|u(x, t)|pdx ≥
(∫

Rn

|ψ1(x, t)|p/(p−1)

)1−p

|F1(t)|p

≥ C1−p
1

(
1− e−2

2
m(0)Cf,g

)p

εp(1 + t)(n−1)(1−p/2) for t ≥ 1.

Plugging this inequality into (3.6) we have

F ′
0(t) ≥ C4ε

p

∫ t

1

(1 + s)(n−1)(1−p/2)ds for t ≥ 1, (5.3)

where

C4 := m(0)C1−p
1

(
1− e−2

2
m(0)Cf,g

)p

> 0.

Integrating (5.3) over [1, t], we obtain

F0(t) ≥ C4ε
p

∫ t

1

ds

∫ s

1

(1 + r)(n−1)(1−p/2)dr

≥ C4ε
p(1 + t)−(n−1)p/2

∫ t

1

ds

∫ s

1

(r − 1)n−1dr

=
C4

n(n+ 1)
εp(1 + t)−(n−1)p/2(t− 1)n+1 for t ≥ 1.

(5.4)

6 Iteration argument

Now we come to the iteration argument to get the upper bound of the lifespan estimates.
First we make the ansatz that F0(t) satisfies

F0(t) ≥ Dj(1 + t)−aj (t− 1)bj for t ≥ 1, j = 1, 2, 3, . . . (6.1)

with positive constants Dj, aj , bj , which will be determined later. Due to (5.4), note that
(6.1) is true when j = 1 with

D1 =
C4

n(n + 1)
εp, a1 = (n− 1)

p

2
, b1 = n+ 1. (6.2)

Plugging (6.1) into (5.2), we have

F0(t) ≥ C3D
p
j

∫ t

1

ds

∫ s

1

(1 + r)−n(p−1)−paj (r − 1)pbjdr

≥ C3D
p
j (1 + t)−n(p−1)−paj

∫ t

1

ds

∫ s

1

(r − 1)pbjdr

≥
C3D

p
j

(pbj + 2)2
(1 + t)−n(p−1)−paj (t− 1)pbj+2 for t ≥ 1.

11



So we can define the sequences {Dj}j∈N, {aj}j∈N, {bj}j∈N by

Dj+1 ≥
C3D

p
j

(pbj + 2)2
, aj+1 = paj + n(p− 1), bj+1 = pbj + 2 (6.3)

to establish
F0(t) ≥ Dj+1(1 + t)−aj+1(t− 1)bj+1 for t ≥ 1.

It follows from (6.2) and (6.3) that for j = 1, 2, 3, . . .

aj = pj−1
(
(n− 1)

p

2
+ n
)
− n, bj = pj−1

(
n+ 1 +

2

p− 1

)
− 2

p− 1
.

Employing the inequality

bj+1 = pbj + 2 ≤ pj
(
n + 1 +

2

p− 1

)

in (6.3), we have

Dj+1 ≥ C5

Dp
j

p2j
, (6.4)

where

C5 :=
C3(

n+ 1 +
2

p− 1

)2 > 0.

From (6.4) it holds that

logDj ≥ p logDj−1 − 2(j − 1) log p + logC5

≥ p2 logDj−2 − 2
(
p(j − 2) + (j − 1)

)
log p+ (p+ 1) logC5

≥ · · ·

≥ pj−1 logD1 −
j−1∑

k=1

2pk−1(j − k) log p+

j−1∑

k=1

pk−1 logC5

= pj−1

(
logD1 −

j−1∑

k=1

2k log p− logC5

pk

)
,

which yields that
Dj ≥ exp

{
pj−1 (logD1 − Sp(j))

}
,

where

Sp(j) :=

j−1∑

k=1

2k log p− logC5

pk
.

We know that
∑∞

k=0 x
k = 1/(1− x) and

∑∞
k=1 kx

k = x/(1− x)2 when |x| < 1. Then

Sp(∞) := lim
j→∞

Sp(j) = log{Cp/(1−p)
5 p2p/(1−p)2}.
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Moreover Sp(j) is a sequence definitively increasing with j. Hence we obtain that

Dj ≥ exp
{
pj−1 (logD1 − Sp(∞))

}

for j sufficiently large. Turning back to (6.1), we have

F0(t) ≥ (1 + t)n(t− 1)−2/(p−1) exp
(
pj−1J(t)

)
for t ≥ 1, (6.5)

where

J(t) =−
(
(n− 1)

p

2
+ n

)
log(1 + t) +

(
n+ 1 +

2

p− 1

)
log(t− 1)

+ logD1 − Sp(∞).

For t ≥ 2, by the definition of J(t), we have

J(t) ≥−
(
(n− 1)

p

2
+ n

)
log(2t) +

(
n + 1 +

2

p− 1

)
log

(
t

2

)

+ logD1 − Sp(∞)

=
γ(p, n)

2(p− 1)
log t+ logD1 −

(
(n− 1)

p

2
+ 2n+ 1 +

2

p− 1

)
log 2− Sp(∞)

= log
(
tγ(p,n)/{2(p−1)}D1

)
− C6,

where

C6 :=

(
(n− 1)

p

2
+ 2n + 1 +

2

p− 1

)
log 2 + Sp(∞).

Thus, if
t > C7ε

−2p(p−1)/γ(p,n)

with

C7 :=
(n(n+ 1)eC6+1

C4

)2(p−1)/γ(p,n)

> 0,

we then get J(t) > 1, and this in turn gives that F0(t) → ∞ by letting j → ∞ in (6.5).
Since we assume that t ≥ 2 in the above iteration argument, we require

0 < ε ≤ ε0 :=

(
C7

2

) γ(p,n)
2p(p−1)

.

Therefore we get the desired upper bound,

T ≤ C7ε
−2p(p−1)/γ(p,n)

for 0 < ε ≤ ε0, and hence we finish the proof of Theorem 1.
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7 Proof for Theorem 2 and Theorem 3

To prove the theorems in low dimensions, we proceed similarly as for Theorem 1, but we
change the first step of the iteration argument to get the desired improvement.

From (3.5), using (3.2) and noting that F0 is positive, we have

F ′
0(t) ≥

m(0)

m(t)
F ′
0(0) ≥ C8ε,

where

C8 := m(0)

∫

Rn

g(x)dx > 0

due to the assumption on g. The above inequality implies that

F0(t) ≥ C8εt for t ≥ 0. (7.1)

By (5.1) and (7.1), we have
∫

R2

|u(x, t)|pdx ≥ C9ε
p(1 + t)−n(p−1)tp, (7.2)

with C9 := C2C
p
8 > 0. Plugging (7.2) into (3.6) and integrating it over [0, t] we come to

F0(t) ≥ m(0)C9ε
p

∫ t

0

ds

∫ s

0

(1 + r)−n(p−1)rpdr

≥ m(0)C9ε
p(1 + t)−n(p−1)

∫ t

0

ds

∫ s

0

rpdr

= C10ε
p(1 + t)−n(p−1)tp+2 for t ≥ 0

(7.3)

with

C10 :=
m(0)C9

(p+ 1)(p+ 2)
> 0.

Remark 7.1. Note that the inequality (7.3) improves the lower bound of (5.4) for n = 2
and 1 < p < 2, and for n = 1 and p > 1. Hence we may establish the improved lifespan
estimate as stated in Theorem 2 and Theorem 3.

In a similar way as in the last section, we define our iteration sequences, {D̃j}, {ãj}, {b̃j},
such that

F0(t) ≥ D̃j(1 + t)−ãj tb̃j for t ≥ 0 and j = 1, 2, 3, . . . (7.4)

with positive constants, D̃j , ãj, b̃j , and

D̃1 = C10ε
p, ã1 = n(p− 1), b̃1 = p+ 2.

Combining (5.2) and (7.4), we have

F0(t) ≥ C3D̃
p
j

∫ t

0

ds

∫ s

0

(1 + r)−n(p−1)−pãjrpb̃jdr

≥
C3D̃

p
j

(pb̃j + 2)2
(1 + t)−n(p−1)−pãj tpb̃j+2 for t ≥ 0.
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So the sequences satisfy
ãj+1 = pãj + n(p− 1),

b̃j+1 = pb̃j + 2,

D̃j+1 ≥
C3D̃

p
j

(pb̃j + 2)2
,

which means that
ãj = npj − n,

b̃j =
p+ 1

p− 1
pj − 2

p− 1
,

D̃j+1 ≥ C11

D̃p
j

p2j
,

where C11 := C3(p− 1)2/[p(p+ 1)]2, from which we get

log D̃j ≥ pj−1

(
log D̃1 −

j−1∑

k=1

2k log p− logC11

pk

)
.

Then proceeding as above we have

F0(t) ≥ D̃j(1 + t)n−npjtp
j(p+1)/(p−1)−2/(p−1)

≥ (1 + t)nt−2/(p−1) exp
(
pj−1J̃(t)

)
,

where

J̃(t) := −np log(1 + t) +

(
p
p+ 1

p− 1

)
log t+ log D̃1 − S̃p(∞)

and
S̃p(∞) = log{Cp/(1−p)

11 p2p/(1−p)2}.
Estimating J̃(t) for t ≥ 1 we get

J̃(t) ≥ −np log(2t) +
(
p
p+ 1

p− 1

)
log t+ log D̃1 − S̃p(∞)

=
γ(p, n)− 2

p− 1
log t + log D̃1 − S̃p(∞)− np log 2,

and then we obtain that

J̃(t) ≥ log
(
t(γ(p,n)−2)/(p−1)D̃1

)
− C12 for t ≥ 1,

where C12 := S̃p(∞) + np log 2. In particular,

γ(p, n)− 2 =

{
p(3− p) if n = 2,

2p if n = 1.

By the definition of D̃1, proceeding in the same way as that in the previous section, we
get the lifespan estimate in Theorem 2 when n = 2, and the lifespan estimate in Theorem
3 when n = 1.
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8 Proof for Theorem 4

Let us come back to our initial equation (1.1), with n = p = 2. In this case we introduce
another multiplier

λ(t) := exp

(
µ1

2

(1 + t)1−β

1− β

)
, (8.1)

which yields

λ′(t) =
µ1

2(1 + t)β
λ(t)

and

λ′′(t) =

(
µ2
1

4(1 + t)2β
− βµ1

2(1 + t)β+1

)
λ(t).

Introducing a new unknown function by

w(x, t) := λ(t)u(x, t),

then it is easy to get

wt =
µ1

2(1 + t)β
λu+ λut

and

wtt =
µ2
1

4(1 + t)2β
λu− βµ1

2(1 + t)β+1
λu+

µ1

(1 + t)β
λut + λutt.

With this in hand the equation (1.1) can be transformed to

{
wtt −∆w = Qw + λ−1|w|2
w(x, 0) = 0, wt(x, 0) = λ(0)εg(x)

(8.2)

where

Q = Q(t) :=
µ2
1

4(1 + t)2β
− βµ1

2(1 + t)β+1
+

µ2

(1 + t)α+1
.

A key property of the function Q is its positivity. Indeed, we can write this function
as Q = Q̃/(1 + t)β+1, where

Q̃ = Q̃(t) :=
µ2
1

4(1 + t)β−1
− βµ1

2
+

µ2

(1 + t)α−β
,

and so it is enough to check the positivity of Q̃. If α = β, then Q̃ is strictly decreasing
to µ2 − βµ1/2, that is positive by our assumption. If α < β, than we can easily find the

minimum t0 of Q̃, that is

t0 = −1 +

(
µ2
1(β − 1)

4µ2(β − α)

) 1
2β−α−1

,

and verify that the condition in (2.8) is equivalent to Q̃(t0) ≥ 0.

Remark 8.1. Observe that:
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• when α < β, the condition (2.8) can be replaced by the more strong but easier
condition

µ2 ≥
µ2
1

4

β − 1

β − α
,

that is equivalent to ask that t0 ≤ 0, so that Q̃ is increasing and positive for t > 0;

• when α > β, Q̃ is strictly decreasing to −βµ1/2 < 0, and then we have no chance
to achieve the positivity of this function for all the time.

Remark 8.2. We can rewrite the function Q also as

Q(t) =
1

4(1 + t)2

[(
µ1

(1 + t)β−1
− β

)2

+
4µ2

(1 + t)α−1
− β2

]
,

which implies some connection with the definition (1.5) of δ in the scale invariant case
(β = 1) with positive mass and α = 1.

Now, it is well-known that our integral equation is of the form

w(x, t) =
λ(0)ε

2π

∫

|x−y|≤t

g(y)√
t2 − |x− y|2

dy

+
1

2π

∫ t

0

dτ

∫

|x−y|≤t−τ

Q(τ)w(y, τ) + λ−1(τ)|w(y, τ)|2√
(t− τ)2 − |x− y|2

dy.

(8.3)

Before we can move forward, we need the positivity of the solution.

Lemma 2. Under the assumption of Theorem 4, the solution w of (8.2) is positive.

Proof. Let w̃ = w̃(x, t) be the energy solution of the Cauchy problem

{
w̃tt −∆w̃ = Q|w̃|+ λ−1|w̃|2, in Rn × [0,∞),

w̃(x, 0) = 0, w̃t(x, 0) = λ(0)εg(x), x ∈ Rn.

It is clear from the analogous of (8.3) for w̃ that this function is positive, and then
satisfies the system (8.2). But u is the unique solution of (1.1), and so w = λu is the
unique solution of (8.2). Then w ≡ w̃ ≥ 0.

By Lemma 2, we can neglect the second term on the right-hand side of (8.3). Using
the relation |y| ≤ R, |x| ≤ t + R due to the support property in the first term on the
right-hand side, from which the inequalities

t− |x− y| ≤ t− ||x| − |y|| ≤ t− |x|+R for |x| ≥ R,

t+ |x− y| ≤ t+ |x|+R ≤ 2(t+R),

we obtain that

w(x, t) ≥ λ(0)ε

2
√
2π

√
t +R

√
t− |x|+R

∫

|x−y|≤t

g(y)dy for |x| ≥ R.
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If we assume |x|+R ≤ t, which implies |x− y| ≤ t for |y| ≤ R, we get
∫

|x−y|≤t

g(y)dy = ‖g‖L1(R2) ,

and then we obtain

w(x, t) ≥
λ(0) ‖g‖L1(R2)

2
√
2π

√
t+R

√
t− |x|+R

ε for R ≤ |x| ≤ t− R. (8.4)

Defining the functional

W (t) :=

∫

R2

w(x, t)dx,

we reach to

W ′′(t) = Q(t)W (t) + λ−1(t)

∫

R2

|w(x, t)|2dx.

Noting that W is also positive by Lemma 2 (or by the fact that W = λF ), then we have

W ′′(t) ≥ λ−1(t)

∫

R2

|w(x, t)|2dx ≥
∫

R≤|x|≤t−R

|w(x, t)|2dx for t ≥ 2R,

where we used the fact that λ−1(t) > 1. Plugging (8.4) into the right-hand side of the
above inequality, we have

W ′′(t) ≥
λ(0)2 ‖g‖2L1(R2)

8π2(t+R)
ε2
∫

R≤|x|≤t−R

1

t− |x|+R
dx,

which yields

W ′′(t) ≥
λ(0)2 ‖g‖2L1(R2)

4π(t+R)
ε2
∫ t−R

R

r

t− r +R
dr for t ≥ 2R.

Then, the rest of the demonstration is exactly the same as that of Theorem 4.1 in [17],
and we omit the details here.

Remark 8.3. We want to emphasize that the results stated in our four Theorems are still
true if we have no damping term, that is if µ1 = 0. In fact, a key point in our proofs
was to introduce multipliers to absorb this term. If µ1 = 0, then m ≡ λ ≡ 1 and the
demonstrations proceed analogously. In this case we do not need any additional condition
on µ2 in Theorem 4, but it is enough to ask µ2 > 0.
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