We prove existence and uniqueness results of positive viscosity solutions of fully nonlinear degenerate elliptic equations with power-like zero order perturbations in bounded domains. The principal part of such equations is either Pk−(D2u) or Pk+(D2u), some sort of “truncated Laplacians”, given respectively by the smallest and the largest partial sum of k eigenvalues of the Hessian matrix. New phenomena with respect to the semilinear case occur. Moreover, for P−k, we explicitly find the critical exponent p of the power nonlinearity that separates the existence and nonexistence range of nontrivial solutions with zero Dirichlet boundary condition.

On positive solutions of fully nonlinear degenerate Lane–Emden type equations / Galise, Giulio. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 266:2-3(2019), pp. 1675-1697. [10.1016/j.jde.2018.08.014]

On positive solutions of fully nonlinear degenerate Lane–Emden type equations

Galise, Giulio
2019

Abstract

We prove existence and uniqueness results of positive viscosity solutions of fully nonlinear degenerate elliptic equations with power-like zero order perturbations in bounded domains. The principal part of such equations is either Pk−(D2u) or Pk+(D2u), some sort of “truncated Laplacians”, given respectively by the smallest and the largest partial sum of k eigenvalues of the Hessian matrix. New phenomena with respect to the semilinear case occur. Moreover, for P−k, we explicitly find the critical exponent p of the power nonlinearity that separates the existence and nonexistence range of nontrivial solutions with zero Dirichlet boundary condition.
2019
Comparison principle; critical exponents; fully nonlinear degenerate elliptic operators; nonproper sub/superlinear equations; viscosity solutions; analysis; applied mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
On positive solutions of fully nonlinear degenerate Lane–Emden type equations / Galise, Giulio. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 266:2-3(2019), pp. 1675-1697. [10.1016/j.jde.2018.08.014]
File allegati a questo prodotto
File Dimensione Formato  
Galise_On-positive-solutions_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 326.91 kB
Formato Adobe PDF
326.91 kB Adobe PDF   Contatta l'autore
Galise_preprint_On-positive-solutions_2019.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 282.72 kB
Formato Adobe PDF
282.72 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1269064
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact