We prove existence and uniqueness results of positive viscosity solutions of fully nonlinear degenerate elliptic equations with power-like zero order perturbations in bounded domains. The principal part of such equations is either Pk−(D2u) or Pk+(D2u), some sort of “truncated Laplacians”, given respectively by the smallest and the largest partial sum of k eigenvalues of the Hessian matrix. New phenomena with respect to the semilinear case occur. Moreover, for P−k, we explicitly find the critical exponent p of the power nonlinearity that separates the existence and nonexistence range of nontrivial solutions with zero Dirichlet boundary condition.
On positive solutions of fully nonlinear degenerate Lane–Emden type equations / Galise, Giulio. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 266:2-3(2019), pp. 1675-1697. [10.1016/j.jde.2018.08.014]
On positive solutions of fully nonlinear degenerate Lane–Emden type equations
Galise, Giulio
2019
Abstract
We prove existence and uniqueness results of positive viscosity solutions of fully nonlinear degenerate elliptic equations with power-like zero order perturbations in bounded domains. The principal part of such equations is either Pk−(D2u) or Pk+(D2u), some sort of “truncated Laplacians”, given respectively by the smallest and the largest partial sum of k eigenvalues of the Hessian matrix. New phenomena with respect to the semilinear case occur. Moreover, for P−k, we explicitly find the critical exponent p of the power nonlinearity that separates the existence and nonexistence range of nontrivial solutions with zero Dirichlet boundary condition.File | Dimensione | Formato | |
---|---|---|---|
Galise_On-positive-solutions_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
326.91 kB
Formato
Adobe PDF
|
326.91 kB | Adobe PDF | Contatta l'autore |
Galise_preprint_On-positive-solutions_2019.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
282.72 kB
Formato
Adobe PDF
|
282.72 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.