The aim of this paper is to establish rates of convergence to Gaussianity for wavelet coefficients on circular Poisson random fields. This result is established by using the Stein–Malliavin techniques introduced by Peccati and Zheng (Electron J Probab 15(48):1487–1527, 2010) and the concentration properties of so-called Mexican needlets on the circle.
Quantitative central limit theorems for Mexican needlet coefficients on circular Poisson fields / Durastanti, Claudio. - In: STATISTICAL METHODS & APPLICATIONS. - ISSN 1618-2510. - 25:4(2016), pp. 651-673. [10.1007/s10260-016-0352-0]
Quantitative central limit theorems for Mexican needlet coefficients on circular Poisson fields
Durastanti, Claudio
2016
Abstract
The aim of this paper is to establish rates of convergence to Gaussianity for wavelet coefficients on circular Poisson random fields. This result is established by using the Stein–Malliavin techniques introduced by Peccati and Zheng (Electron J Probab 15(48):1487–1527, 2010) and the concentration properties of so-called Mexican needlets on the circle.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
quamex.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
472.17 kB
Formato
Adobe PDF
|
472.17 kB | Adobe PDF | Visualizza/Apri PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.