Cancer cachexia is a multilayered syndrome consisting of the interaction between tumor cells and the host, at times modulated by the pharmacologic treatments used for tumor control. Key cellular and soluble mediators, activated because of this interaction, induce metabolic and nutritional alterations. This results in mass and functional changes systemically, and can lead to increased morbidity and reduced length and quality of life. For most solid malignancies, a cure remains an unrealistic goal, and targeting the key mediators is ineffective because of their heterogeneity/redundancy. The most beneficial approach is to target underlying systemic mechanisms, an approach where the novel non-peptide ghrelin analogue anamorelin has the advantage of stimulating appetite and possibly food intake, as well as promoting anabolism and significant muscle mass gain. In the ROMANA studies, compared with placebo, anamorelin significantly increased lean body mass in non-small cell lung cancer (NSCLC) patients. Body composition analysis suggested that anamorelin is an active anabolic agent in patients with NSCLC, without the side effects of other anabolic drugs. Anamorelin also induced a significant and meaningful improvement of anorexia/cachexia symptoms. The ROMANA trials have provided unprecedented knowledge, highlighting the therapeutic effects of anamorelin as an initial, but significant, step toward directly managing cancer cachexia.

Efficacy of Anamorelin, a Novel Non-Peptide Ghrelin Analogue, in Patients with Advanced Non-Small Cell Lung Cancer (NSCLC) and Cachexia-Review and Expert Opinion / Currow, David C.; Maddocks, Matthew; Cella, David; Muscaritoli, Maurizio. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - 19:11(2018), p. 3471. [10.3390/ijms19113471]

Efficacy of Anamorelin, a Novel Non-Peptide Ghrelin Analogue, in Patients with Advanced Non-Small Cell Lung Cancer (NSCLC) and Cachexia-Review and Expert Opinion

Muscaritoli, Maurizio
2018

Abstract

Cancer cachexia is a multilayered syndrome consisting of the interaction between tumor cells and the host, at times modulated by the pharmacologic treatments used for tumor control. Key cellular and soluble mediators, activated because of this interaction, induce metabolic and nutritional alterations. This results in mass and functional changes systemically, and can lead to increased morbidity and reduced length and quality of life. For most solid malignancies, a cure remains an unrealistic goal, and targeting the key mediators is ineffective because of their heterogeneity/redundancy. The most beneficial approach is to target underlying systemic mechanisms, an approach where the novel non-peptide ghrelin analogue anamorelin has the advantage of stimulating appetite and possibly food intake, as well as promoting anabolism and significant muscle mass gain. In the ROMANA studies, compared with placebo, anamorelin significantly increased lean body mass in non-small cell lung cancer (NSCLC) patients. Body composition analysis suggested that anamorelin is an active anabolic agent in patients with NSCLC, without the side effects of other anabolic drugs. Anamorelin also induced a significant and meaningful improvement of anorexia/cachexia symptoms. The ROMANA trials have provided unprecedented knowledge, highlighting the therapeutic effects of anamorelin as an initial, but significant, step toward directly managing cancer cachexia.
2018
anamorelin; anorexia; ghrelin; non-small cell lung cancer; ROMANA 1; ROMANA 2; Body Weight; Cachexia; Carcinoma, Non-Small-Cell Lung; Ghrelin; Hand Strength; Humans; Hydrazines; Oligopeptides; Catalysis; Molecular Biology; Spectroscopy; Computer Science Applications1707 Computer Vision and Pattern Recognition; Physical and Theoretical Chemistry; Organic Chemistry; Inorganic Chemistry
01 Pubblicazione su rivista::01a Articolo in rivista
Efficacy of Anamorelin, a Novel Non-Peptide Ghrelin Analogue, in Patients with Advanced Non-Small Cell Lung Cancer (NSCLC) and Cachexia-Review and Expert Opinion / Currow, David C.; Maddocks, Matthew; Cella, David; Muscaritoli, Maurizio. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - 19:11(2018), p. 3471. [10.3390/ijms19113471]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1263590
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact