The final aim of muscle tissue engineering (TE) is to create a new tissue able to restore the functionality of impaired muscles once transplanted in the site of injury. Therefore, functional contractile properties close to that of healthy muscles are desirable to allow for a good compatibility and a proper functional contribution. Since skeletal muscles deal with locomotion during their normal activity, an accurate measurement of ex vivo muscle engineered tissues' isotonic properties is crucial. In this paper, we devised an experimental system to measure the mechanical power generated by an ex vivo muscle engineered tissue, the X-MET, based on the isovelocity contraction technique. The X-MET is developed without the use of any scaffolds, so that its mechanical properties are not affected by endogenous components. Our experiments allowed for delimiting the ranges of shortening and shortening velocity for which the tissue is able to generate and maintain power for the entire stimulation, which is the condition that better reproduces muscle physiological activity. Then, we measured the power generated by the X-MET and fit the experimental results to the Hill's equation usually employed for modeling the force-velocity relationship of skeletal muscles. The use of this model yielded to the measurement of maximum power and maximum shortening velocity. Results revealed that most of the isotonic properties were consistent with that proposed in the literature for slow-twitch muscles; in particular, the X-METs were able to generate a maximum power of 2.08± 0.78 W/kg and had a maximum shortening velocity of 1.84 ± 0.57 L₀/s, on average.

Measuring the maximum power of an ex vivo engineered muscle tissue with isovelocity shortening technique / Pisu, Simona; Cosentino, Marianna; Apa, Ludovica; Musarò, Antonio; Rizzuto, Emanuele; Del Prete, Zaccaria. - In: IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT. - ISSN 0018-9456. - (2019), pp. 1-8. [10.1109/TIM.2019.2904071]

Measuring the maximum power of an ex vivo engineered muscle tissue with isovelocity shortening technique

Pisu, Simona;Cosentino, Marianna;Apa, Ludovica;Musarò, Antonio;Rizzuto, Emanuele
;
Del Prete, Zaccaria
2019

Abstract

The final aim of muscle tissue engineering (TE) is to create a new tissue able to restore the functionality of impaired muscles once transplanted in the site of injury. Therefore, functional contractile properties close to that of healthy muscles are desirable to allow for a good compatibility and a proper functional contribution. Since skeletal muscles deal with locomotion during their normal activity, an accurate measurement of ex vivo muscle engineered tissues' isotonic properties is crucial. In this paper, we devised an experimental system to measure the mechanical power generated by an ex vivo muscle engineered tissue, the X-MET, based on the isovelocity contraction technique. The X-MET is developed without the use of any scaffolds, so that its mechanical properties are not affected by endogenous components. Our experiments allowed for delimiting the ranges of shortening and shortening velocity for which the tissue is able to generate and maintain power for the entire stimulation, which is the condition that better reproduces muscle physiological activity. Then, we measured the power generated by the X-MET and fit the experimental results to the Hill's equation usually employed for modeling the force-velocity relationship of skeletal muscles. The use of this model yielded to the measurement of maximum power and maximum shortening velocity. Results revealed that most of the isotonic properties were consistent with that proposed in the literature for slow-twitch muscles; in particular, the X-METs were able to generate a maximum power of 2.08± 0.78 W/kg and had a maximum shortening velocity of 1.84 ± 0.57 L₀/s, on average.
2019
hill’s model; isovelocity test; power measurement; skeletal muscle; tissue engineering (TE)
01 Pubblicazione su rivista::01a Articolo in rivista
Measuring the maximum power of an ex vivo engineered muscle tissue with isovelocity shortening technique / Pisu, Simona; Cosentino, Marianna; Apa, Ludovica; Musarò, Antonio; Rizzuto, Emanuele; Del Prete, Zaccaria. - In: IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT. - ISSN 0018-9456. - (2019), pp. 1-8. [10.1109/TIM.2019.2904071]
File allegati a questo prodotto
File Dimensione Formato  
Pisu_postprint_Measuring_2019.pdf

Open Access dal 03/04/2021

Note: https://doi.org/10.1109/TIM.2019.2904071
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri PDF
Pisu_measuring_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1262773
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact