The MADCOWannotation system supports a notion of group, facilitating focused annotations with respect to a domain. We argue that the use of an ontology to represent knowledge about the domain allows posting more refined annotations to a group, while the use of ontology concepts as tags facilitates the formulation of semantically significant queries for retrieving annotations on specific topics. Services for promoting participation to groups of potentially interested users can also leverage the adoption of domain ontologies, by matching tags users freely employed in their annotations to terms proper to some domain ontology. To this end, we propose a combination of existing relevance measures for matching users to domains. © 2014 IEEE.

Users-Groups Matching in an Annotation System. Ontological and URL Relevance Measures / Avola, Danilo; Bottoni, Paolo; Hawash, Amjad. - (2014), pp. 100-109. ((Intervento presentato al convegno 2014 6th International Conference on Computer Science and Information Technology, CSIT 2014 tenutosi a Amman, jor [10.1109/CSIT.2014.6805986].

Users-Groups Matching in an Annotation System. Ontological and URL Relevance Measures

Avola, Danilo;Bottoni, Paolo;
2014

Abstract

The MADCOWannotation system supports a notion of group, facilitating focused annotations with respect to a domain. We argue that the use of an ontology to represent knowledge about the domain allows posting more refined annotations to a group, while the use of ontology concepts as tags facilitates the formulation of semantically significant queries for retrieving annotations on specific topics. Services for promoting participation to groups of potentially interested users can also leverage the adoption of domain ontologies, by matching tags users freely employed in their annotations to terms proper to some domain ontology. To this end, we propose a combination of existing relevance measures for matching users to domains. © 2014 IEEE.
978-1-4799-3999-2
978-1-4799-3998-5
File allegati a questo prodotto
File Dimensione Formato  
Avola_Annotation-System_2014.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.24 MB
Formato Adobe PDF
2.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1256906
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact