Shape memory alloys (SMAs) are a wide class of materials characterized by the property to recover the initial shape. This property is due to ability of alloys to change the microstructure from a “parent” microstructure (usually called “Austenite”) to a “product” microstructure (usually called “Martensite”). Considering the tensile resistance, SMAs stress strain curves are characterized by a sort of plateau were the transformations from Austenite to Martensite (in loading condition) and from Martensite to Austenite (in unloading condition) take place. In this work a simple model to predict the microstructure modification has been proposed and verified with an equiatomic NiTi alloy characterized by a pseudo-elastic behavior.
A simple model to calculate the microstructure evolution in a NiTi SMA / Di Cocco, Vittorio; Natali, Stefano. - In: FRATTURA E INTEGRITÀ STRUTTURALE. - ISSN 1971-8993. - 12:44(2018), pp. 173-182. [10.3221/IGF-ESIS.44.14]
A simple model to calculate the microstructure evolution in a NiTi SMA
Natali, Stefano
2018
Abstract
Shape memory alloys (SMAs) are a wide class of materials characterized by the property to recover the initial shape. This property is due to ability of alloys to change the microstructure from a “parent” microstructure (usually called “Austenite”) to a “product” microstructure (usually called “Martensite”). Considering the tensile resistance, SMAs stress strain curves are characterized by a sort of plateau were the transformations from Austenite to Martensite (in loading condition) and from Martensite to Austenite (in unloading condition) take place. In this work a simple model to predict the microstructure modification has been proposed and verified with an equiatomic NiTi alloy characterized by a pseudo-elastic behavior.File | Dimensione | Formato | |
---|---|---|---|
Di-Cocco_simple-model-calculate_2018.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
1.9 MB
Formato
Adobe PDF
|
1.9 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.