Purpose: To determine if high-intensity, task-oriented, visual feedback training with a video game balance board (Nintendo Wii) induces significant changes in diffusion-tensor imaging (DTI) parameters of cerebellar connections and other supratentorial associative bundles and if these changes are related to clinical improvement in patients with multiple sclerosis.Conclusion: Despite the low statistical power (35%) due to the small sample size, the results showed that training with the balance board system modified the microstructure of superior cerebellar peduncles. The clinical improvement observed after training might be mediated by enhanced myelinationrelated processes, suggesting that high-intensity, taskoriented exercises could induce favorable microstructural changes in the brains of patients with multiple sclerosis.Materials and Methods: The protocol was approved by local ethical committee; each participant provided written informed consent. In this 24-week, randomized, two-period crossover pilot study, 27 patients underwent static posturography and brain magnetic resonance (MR) imaging at study entry, after the first 12-week period, and at study termination. Thirteen patients started a 12-week training program followed by a 12-week period without any intervention, while 14 patients received the intervention in reverse order. Fifteen healthy subjects also underwent MR imaging once and underwent static posturography. Virtual dissection of white matter tracts was performed with streamline tractography; values of DTI parameters were then obtained for each dissected tract. Repeated measures analyses of variance were performed to evaluate whether DTI parameters significantly changed after intervention, with false discovery rate correction for multiple hypothesis testing.Results: There were relevant differences between patients and healthy control subjects in postural sway and DTI parameters (P <.05). Significant main effects of time by group interaction for fractional anisotropy and radial diffusivity of the left and right superior cerebellar peduncles were found (F2,23 range, 5.555-3.450; P = .036-.088 after false discovery rate correction). These changes correlated with objective measures of balance improvement detected at static posturography (r = 20.381 to 0.401, P < .05). However, both clinical and DTI changes did not persist beyond 12 weeks after training.

Multiple sclerosis: changes in microarchitecture of white matter tracts after training with a video game balance board / Prosperini, Luca; Fanelli, Fulvia; Petsas, Nikolaos; Sbardella, Emilia; Tona, Francesca; Raz, Eytan; Fortuna, Deborah; De Angelis, Floriana; Pozzilli, Carlo; Pantano, Patrizia. - In: RADIOLOGY. - ISSN 0033-8419. - 273:2(2014), pp. 529-538. [10.1148/radiol.14140168]

Multiple sclerosis: changes in microarchitecture of white matter tracts after training with a video game balance board

Prosperini, Luca;Fanelli, Fulvia;Petsas, Nikolaos;Sbardella, Emilia;Tona, Francesca;Raz, Eytan;Fortuna, Deborah;De Angelis, Floriana;Pozzilli, Carlo;Pantano, Patrizia
Ultimo
2014

Abstract

Purpose: To determine if high-intensity, task-oriented, visual feedback training with a video game balance board (Nintendo Wii) induces significant changes in diffusion-tensor imaging (DTI) parameters of cerebellar connections and other supratentorial associative bundles and if these changes are related to clinical improvement in patients with multiple sclerosis.Conclusion: Despite the low statistical power (35%) due to the small sample size, the results showed that training with the balance board system modified the microstructure of superior cerebellar peduncles. The clinical improvement observed after training might be mediated by enhanced myelinationrelated processes, suggesting that high-intensity, taskoriented exercises could induce favorable microstructural changes in the brains of patients with multiple sclerosis.Materials and Methods: The protocol was approved by local ethical committee; each participant provided written informed consent. In this 24-week, randomized, two-period crossover pilot study, 27 patients underwent static posturography and brain magnetic resonance (MR) imaging at study entry, after the first 12-week period, and at study termination. Thirteen patients started a 12-week training program followed by a 12-week period without any intervention, while 14 patients received the intervention in reverse order. Fifteen healthy subjects also underwent MR imaging once and underwent static posturography. Virtual dissection of white matter tracts was performed with streamline tractography; values of DTI parameters were then obtained for each dissected tract. Repeated measures analyses of variance were performed to evaluate whether DTI parameters significantly changed after intervention, with false discovery rate correction for multiple hypothesis testing.Results: There were relevant differences between patients and healthy control subjects in postural sway and DTI parameters (P <.05). Significant main effects of time by group interaction for fractional anisotropy and radial diffusivity of the left and right superior cerebellar peduncles were found (F2,23 range, 5.555-3.450; P = .036-.088 after false discovery rate correction). These changes correlated with objective measures of balance improvement detected at static posturography (r = 20.381 to 0.401, P < .05). However, both clinical and DTI changes did not persist beyond 12 weeks after training.
2014
Adolescent; Adult; Contrast Media; Cross-Over Studies; Diffusion Tensor Imaging; Female; Humans; Image Interpretation, Computer-Assisted; Male; Middle Aged; Multiple Sclerosis; Nerve Fibers, Myelinated; Pilot Projects; Postural Balance; Prospective Studies; White Matter; Video Games; Radiology, Nuclear Medicine and Imaging
01 Pubblicazione su rivista::01a Articolo in rivista
Multiple sclerosis: changes in microarchitecture of white matter tracts after training with a video game balance board / Prosperini, Luca; Fanelli, Fulvia; Petsas, Nikolaos; Sbardella, Emilia; Tona, Francesca; Raz, Eytan; Fortuna, Deborah; De Angelis, Floriana; Pozzilli, Carlo; Pantano, Patrizia. - In: RADIOLOGY. - ISSN 0033-8419. - 273:2(2014), pp. 529-538. [10.1148/radiol.14140168]
File allegati a questo prodotto
File Dimensione Formato  
Prosperini_multiple-scleorisis-microarchitecture_2014pdf

Open Access dal 01/06/2015

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.44 MB
Formato Unknown
1.44 MB Unknown

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1256630
Citazioni
  • ???jsp.display-item.citation.pmc??? 25
  • Scopus 91
  • ???jsp.display-item.citation.isi??? 82
social impact