Industrial symbiosis (IS) is recognized as an effective practice to support circular economy and sustainable development because it is able to enhance the technical efficiency of production processes, provided IS relationships among companies remain active over the long period. However, although it has been established that IS relationships can be vulnerable to disruptive events that reduce the willingness of companies to cooperate in IS synergies, to date few contributions to the literature focus attention on the events which lead firms to interrupt IS synergies. This paper contributes to the existing literature firstly by highlighting the disruptive events affecting the willingness of companies to cooperate in IS synergies and their causes, and secondly by developing an analytical model to assess the impact of each disruption on physical and monetary flows created among companies by the IS relationship. Specifically, an enterprise input-output (EIO) model is proposed, aimed at mapping the physical and monetary flows resulting from IS synergies among companies. Through this model, disruptive events can be modeled and their impact on the above-mentioned flows can be assessed. A numerical case example illustrates how the model works and how company managers and IS facilitators could use it to evaluate to what degree their current IS relationships may be vulnerable to perturbations. The model could therefore facilitate the design of adequate countermeasures and contribute to the development of perturbation resilient IS relationships. Furthermore, policymakers could adopt the model when designing policy actions to support IS practice.
The impact of technical and economic disruptions in industrial symbiosis relationships: An enterprise input-output approach / Fraccascia, Luca. - In: INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS. - ISSN 0925-5273. - 213:(2019), pp. 161-174. [10.1016/j.ijpe.2019.03.020]
The impact of technical and economic disruptions in industrial symbiosis relationships: An enterprise input-output approach
Fraccascia, Luca
Primo
2019
Abstract
Industrial symbiosis (IS) is recognized as an effective practice to support circular economy and sustainable development because it is able to enhance the technical efficiency of production processes, provided IS relationships among companies remain active over the long period. However, although it has been established that IS relationships can be vulnerable to disruptive events that reduce the willingness of companies to cooperate in IS synergies, to date few contributions to the literature focus attention on the events which lead firms to interrupt IS synergies. This paper contributes to the existing literature firstly by highlighting the disruptive events affecting the willingness of companies to cooperate in IS synergies and their causes, and secondly by developing an analytical model to assess the impact of each disruption on physical and monetary flows created among companies by the IS relationship. Specifically, an enterprise input-output (EIO) model is proposed, aimed at mapping the physical and monetary flows resulting from IS synergies among companies. Through this model, disruptive events can be modeled and their impact on the above-mentioned flows can be assessed. A numerical case example illustrates how the model works and how company managers and IS facilitators could use it to evaluate to what degree their current IS relationships may be vulnerable to perturbations. The model could therefore facilitate the design of adequate countermeasures and contribute to the development of perturbation resilient IS relationships. Furthermore, policymakers could adopt the model when designing policy actions to support IS practice.File | Dimensione | Formato | |
---|---|---|---|
Fraccascia_The-impact _2019.pdf
solo gestori archivio
Note: https://doi.org/10.1016/j.ijpe.2019.03.020
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.91 MB
Formato
Adobe PDF
|
2.91 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.