Neuroplasticity, which is the ability of the brain to adapt to internal and external environmental changes, physiologically occurs during growth and in response to damage. The brain's response to damage is of particular interest in multiple sclerosis, a chronic disease characterized by inflammatory and neurodegenerative damage to the central nervous system. Functional MRI (fMRI) is a tool that allows functional changes related to the disease and to its evolution to be studied in vivo. Several studies have shown that abnormal brain recruitment during the execution of a task starts in the early phases of multiple sclerosis. The increased functional activation during a specific task observed has been interpreted mainly as a mechanism of adaptive plasticity designed to contrast the increase in tissue damage. More recent fMRI studies, which have focused on the activity of brain regions at rest, have yielded nonunivocal results, suggesting that changes in functional brain connections represent mechanisms of either adaptive or maladaptive plasticity. The few longitudinal studies available to date on disease evolution have also yielded discrepant results that are likely to depend on the clinical features considered and the length of the follow-up. Lastly, fMRI has been used in interventional studies to investigate plastic changes induced by pharmacological therapy or rehabilitation, though whether such changes represent a surrogate of neuroplasticity remains unclear. The aim of this paper is to systematically review the existing literature in order to provide an overall description of both the neuroplastic process itself and the evolution in the use of fMRI techniques as a means of assessing neuroplasticity. The quantitative and qualitative approach adopted here ensures an objective analysis of published, peer-reviewed research and yields an overview of up-to-date knowledge.

The role of fMRI in the assessment of neuroplasticity in MS: a systematic review / DE GIGLIO, Laura; Tommasin, Silvia; Petsas, Nikolaos; Pantano, Patrizia. - In: NEURAL PLASTICITY. - ISSN 2090-5904. - 2018:(2018). [10.1155/2018/3419871]

The role of fMRI in the assessment of neuroplasticity in MS: a systematic review

Laura, De Giglio;Silvia, Tommasin;Nikolaos, Petsas;Patrizia, Pantano
2018

Abstract

Neuroplasticity, which is the ability of the brain to adapt to internal and external environmental changes, physiologically occurs during growth and in response to damage. The brain's response to damage is of particular interest in multiple sclerosis, a chronic disease characterized by inflammatory and neurodegenerative damage to the central nervous system. Functional MRI (fMRI) is a tool that allows functional changes related to the disease and to its evolution to be studied in vivo. Several studies have shown that abnormal brain recruitment during the execution of a task starts in the early phases of multiple sclerosis. The increased functional activation during a specific task observed has been interpreted mainly as a mechanism of adaptive plasticity designed to contrast the increase in tissue damage. More recent fMRI studies, which have focused on the activity of brain regions at rest, have yielded nonunivocal results, suggesting that changes in functional brain connections represent mechanisms of either adaptive or maladaptive plasticity. The few longitudinal studies available to date on disease evolution have also yielded discrepant results that are likely to depend on the clinical features considered and the length of the follow-up. Lastly, fMRI has been used in interventional studies to investigate plastic changes induced by pharmacological therapy or rehabilitation, though whether such changes represent a surrogate of neuroplasticity remains unclear. The aim of this paper is to systematically review the existing literature in order to provide an overall description of both the neuroplastic process itself and the evolution in the use of fMRI techniques as a means of assessing neuroplasticity. The quantitative and qualitative approach adopted here ensures an objective analysis of published, peer-reviewed research and yields an overview of up-to-date knowledge.
2018
Brain; Brain Mapping; Humans; Magnetic Resonance Imaging; Multiple Sclerosis; Neuronal Plasticity; Neurology; Neurology (clinical)
01 Pubblicazione su rivista::01a Articolo in rivista
The role of fMRI in the assessment of neuroplasticity in MS: a systematic review / DE GIGLIO, Laura; Tommasin, Silvia; Petsas, Nikolaos; Pantano, Patrizia. - In: NEURAL PLASTICITY. - ISSN 2090-5904. - 2018:(2018). [10.1155/2018/3419871]
File allegati a questo prodotto
File Dimensione Formato  
DeGiglio_fMRI-Assessment-neuroplasticity_2018.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 981.27 kB
Formato Adobe PDF
981.27 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1256281
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 14
social impact