Ataxia telangiectasia is a rare, multi system disease caused by ATM kinase deficiency. Atm-knockout mice recapitulate premature aging, immunodeficiency, cancer predisposition, growth retardation and motor defects, but not cerebellar neurodegeneration and ataxia. We explored whether Atm loss is responsible for skeletal muscle defects by investigating myofiber morphology, oxidative/glycolytic activity, myocyte ultrastructural architecture and neuromuscular junctions. Atm-knockout mice showed reduced muscle and fiber size. Atrophy, protein synthesis impairment and a switch from glycolytic to oxidative fibers were detected, along with an increase of in expression of slow and fast myosin types (Myh7, and Myh2 and Myh4, respectively) in tibialis anterior and solei muscles isolated from Atm-knockout mice. Transmission electron microscopy of tibialis anterior revealed misalignments of Z-lines and sarcomeres and mitochondria abnormalities that were associated with an increase in reactive oxygen species. Moreover, neuromuscular junctions appeared larger and more complex than those in Atm wild-type mice, but with preserved presynaptic terminals. In conclusion, we report for the first time that Atm-knockout mice have clear morphological skeletal muscle defects that will be relevant for the investigation of the oxidative stress response, motor alteration and the interplay with peripheral nervous system in ataxia telangiectasia.

Atrophy, oxidative switching and ultrastructural defects in skeletal muscle of the ataxia telangiectasia mouse model / Tassinari, Valentina; De Gennaro, Vincenzo; Sala, Gina La; Marazziti, Daniela; Bolasco, Giulia; Aguanno, Salvatore; De Angelis, Luciana; Naro, Fabio; Pellegrini, Manuela. - In: JOURNAL OF CELL SCIENCE. - ISSN 0021-9533. - 132:5(2019), pp. 1-11. [10.1242/jcs.223008]

Atrophy, oxidative switching and ultrastructural defects in skeletal muscle of the ataxia telangiectasia mouse model

Tassinari, Valentina;Aguanno, Salvatore;De Angelis, Luciana;Naro, Fabio;
2019

Abstract

Ataxia telangiectasia is a rare, multi system disease caused by ATM kinase deficiency. Atm-knockout mice recapitulate premature aging, immunodeficiency, cancer predisposition, growth retardation and motor defects, but not cerebellar neurodegeneration and ataxia. We explored whether Atm loss is responsible for skeletal muscle defects by investigating myofiber morphology, oxidative/glycolytic activity, myocyte ultrastructural architecture and neuromuscular junctions. Atm-knockout mice showed reduced muscle and fiber size. Atrophy, protein synthesis impairment and a switch from glycolytic to oxidative fibers were detected, along with an increase of in expression of slow and fast myosin types (Myh7, and Myh2 and Myh4, respectively) in tibialis anterior and solei muscles isolated from Atm-knockout mice. Transmission electron microscopy of tibialis anterior revealed misalignments of Z-lines and sarcomeres and mitochondria abnormalities that were associated with an increase in reactive oxygen species. Moreover, neuromuscular junctions appeared larger and more complex than those in Atm wild-type mice, but with preserved presynaptic terminals. In conclusion, we report for the first time that Atm-knockout mice have clear morphological skeletal muscle defects that will be relevant for the investigation of the oxidative stress response, motor alteration and the interplay with peripheral nervous system in ataxia telangiectasia.
2019
Atm; atrophy; myopathy; ROS; skeletal muscle; slow myosin; cell biology
01 Pubblicazione su rivista::01a Articolo in rivista
Atrophy, oxidative switching and ultrastructural defects in skeletal muscle of the ataxia telangiectasia mouse model / Tassinari, Valentina; De Gennaro, Vincenzo; Sala, Gina La; Marazziti, Daniela; Bolasco, Giulia; Aguanno, Salvatore; De Angelis, Luciana; Naro, Fabio; Pellegrini, Manuela. - In: JOURNAL OF CELL SCIENCE. - ISSN 0021-9533. - 132:5(2019), pp. 1-11. [10.1242/jcs.223008]
File allegati a questo prodotto
File Dimensione Formato  
Tassinaro_Atrophy_2019.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 9.09 MB
Formato Adobe PDF
9.09 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1255338
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact