We propose a three-dimensional numerical model for non-hydrostatic free surface flows in which the Navier-Stokes equations are expressed in integral form on a coordinate system in which the vertical coordinate is varying in time. By a time-dependent coordinate transformation, the irregular time varying physical domain is transformed into a uniform fixed computational domain, in which the equations of motion are numerically integrated by a shock-capturing scheme based on WENO reconstruction and an approximate HLL Riemann Solver. The proposed model is used to simulate free surface elevation and three-dimensional velocity fields induced by normally incident waves on a beach with submerged breakwaters. The three-dimensional numerical results are compared with experimental measurements and with the numerical results obtained by a depth-averaged horizontal two-dimensional model. This comparison shows that features of three-dimensionality in the fluid flow induced by wave-structure interaction, as the undertow, can be correctly simulated by the proposed non-hydrostatic three-dimensional model.
Three-dimensional numerical simulation of the velocity fields induced by submerged breakwaters / Cannata, Giovanni; Gallerano, Francesco; Palleschi, Federica; Petrelli, Chiara; Barsi, Luca. - In: INTERNATIONAL JOURNAL OF MECHANICS. - ISSN 1998-4448. - 13:(2019), pp. 1-14.
Three-dimensional numerical simulation of the velocity fields induced by submerged breakwaters
Cannata, Giovanni;Gallerano, Francesco;Palleschi, Federica;Petrelli, Chiara;Barsi, Luca
2019
Abstract
We propose a three-dimensional numerical model for non-hydrostatic free surface flows in which the Navier-Stokes equations are expressed in integral form on a coordinate system in which the vertical coordinate is varying in time. By a time-dependent coordinate transformation, the irregular time varying physical domain is transformed into a uniform fixed computational domain, in which the equations of motion are numerically integrated by a shock-capturing scheme based on WENO reconstruction and an approximate HLL Riemann Solver. The proposed model is used to simulate free surface elevation and three-dimensional velocity fields induced by normally incident waves on a beach with submerged breakwaters. The three-dimensional numerical results are compared with experimental measurements and with the numerical results obtained by a depth-averaged horizontal two-dimensional model. This comparison shows that features of three-dimensionality in the fluid flow induced by wave-structure interaction, as the undertow, can be correctly simulated by the proposed non-hydrostatic three-dimensional model.File | Dimensione | Formato | |
---|---|---|---|
Cannata_Three-dimensional-numerical_2019.pdf
accesso aperto
Note: http://naun.org/cms.action?id=19940
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.84 MB
Formato
Adobe PDF
|
1.84 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.