The Citrate Lyase (ACL) is the main cytosolic enzyme that converts the citrate exported from mitochondria by the SLC25A1 carrier in Acetyl Coenzyme A (acetyl-CoA) and oxaloacetate. Acetyl-CoA is a high-energy intermediate common to a large number of metabolic processes including protein acetylation reactions. This renders ACL a key regulator of histone acetylation levels and gene expression in diverse organisms including humans. We have found that depletion of Drosophila ATPCL, the fly ortholog of human ACL, reduced levels of Acetyl CoA but, unlike its human counterpart, does not affect global histone acetylation and gene expression. Nevertheless, reduced ATPCL levels caused evident, although moderate, mitotic chromosome breakage suggesting that this enzyme plays a partial role in chromosome stability. These defects did not increase upon X-ray irradiation, indicating that they are not dependent on an impairment of DNA repair. Interestingly, depletion of ATPCL drastically increased the frequency of chromosome breaks associated to mutations in scheggia, which encodes the ortholog of the mitochondrial citrate carrier SLC25A1 that is also required for chromosome integrity and histone acetylation. Our results indicate that ATPCL has a dispensable role in histone acetylation and prevents massive chromosome fragmentation when citrate efflux is altered.
Depletion of ATP-citrate lyase (ATPCL) affects chromosome integrity without altering histone acetylation in Drosophila mitotic cells / MORCIANO, PATRIZIA; DI GIORGIO, MARIA LAURA; PORRAZZO, ANTONELLA; LICURSI, Valerio; NEGRI, RODOLFO; Yikang, Rong; CENCI, GIOVANNI. - In: FRONTIERS IN PHYSIOLOGY. - ISSN 1664-042X. - 10:(2019), pp. 1-5. [10.3389/fphys.2019.00383]
Depletion of ATP-citrate lyase (ATPCL) affects chromosome integrity without altering histone acetylation in Drosophila mitotic cells
Patrizia MorcianoCo-primo
Investigation
;Maria Laura Di GiorgioCo-primo
Investigation
;PORRAZZO, ANTONELLASecondo
Investigation
;Valerio LicursiData Curation
;Rodolfo NegriData Curation
;Giovanni Cenci
Ultimo
Supervision
2019
Abstract
The Citrate Lyase (ACL) is the main cytosolic enzyme that converts the citrate exported from mitochondria by the SLC25A1 carrier in Acetyl Coenzyme A (acetyl-CoA) and oxaloacetate. Acetyl-CoA is a high-energy intermediate common to a large number of metabolic processes including protein acetylation reactions. This renders ACL a key regulator of histone acetylation levels and gene expression in diverse organisms including humans. We have found that depletion of Drosophila ATPCL, the fly ortholog of human ACL, reduced levels of Acetyl CoA but, unlike its human counterpart, does not affect global histone acetylation and gene expression. Nevertheless, reduced ATPCL levels caused evident, although moderate, mitotic chromosome breakage suggesting that this enzyme plays a partial role in chromosome stability. These defects did not increase upon X-ray irradiation, indicating that they are not dependent on an impairment of DNA repair. Interestingly, depletion of ATPCL drastically increased the frequency of chromosome breaks associated to mutations in scheggia, which encodes the ortholog of the mitochondrial citrate carrier SLC25A1 that is also required for chromosome integrity and histone acetylation. Our results indicate that ATPCL has a dispensable role in histone acetylation and prevents massive chromosome fragmentation when citrate efflux is altered.File | Dimensione | Formato | |
---|---|---|---|
Morciano_Depletion_2019.pdf
accesso aperto
Note: https://doi.org/10.3389/fphys.2019.00383
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
925.55 kB
Formato
Adobe PDF
|
925.55 kB | Adobe PDF | |
Data_Sheet_1_Depletion of ATP-Citrate Lyase (ATPCL) Affects Chromosome Integrity Without Altering Histone Acetylation in Drosophila Mitotic Cells.PDF
accesso aperto
Note: https://www.frontiersin.org/articles/10.3389/fphys.2019.00383/full#supplementary-material
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
3.72 MB
Formato
Adobe PDF
|
3.72 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.