The lipopeptide antimycotic agent, cilofungin, at a dose of 20 micrograms ml-1, inhibited beta 1-3 glucan synthesis in a drug-susceptible strain (3153; minimum inhibitory concentration (MIC) < 1 microgram ml-1) as well as in a drug-resistant strain of Candida albicans (CA-2, derived from 3153 by nitrosoguanidine mutagenesis; MIC > 50 micrograms ml-1). This was demonstrated for both whole cells under growing and non-growing conditions, and during protoplast regeneration. However, time-effect experiments, during growth of a CA-2 culture initially exposed to an inhibitory dose of cilofungin, showed that this strain was able to progressively regain both glucan synthesis and a growth rate comparable to that of cultures that had not been treated with the drug. This recovery was not attributable to cilofungin instability or degradation within the CA-2 culture. Our study suggests the existence of an as yet unknown drug-related and/or cell-related factor(s) modulating the inhibition of glucan synthesis, and then contributing to the actual inhibitory effects of cilofungin in C. albicans.

Glucan synthesis and its inhibition by cilofungin in susceptible and resistante strains of Candida albicans. / Angiolella, Letizia; Bromuro, C; Simonetti, N; Cassone, A.. - In: JOURNAL OF MEDICAL AND VETERINARY MYCOLOGY. - ISSN 0268-1218. - 30(1992), pp. 366-369.

Glucan synthesis and its inhibition by cilofungin in susceptible and resistante strains of Candida albicans.

ANGIOLELLA, Letizia;
1992

Abstract

The lipopeptide antimycotic agent, cilofungin, at a dose of 20 micrograms ml-1, inhibited beta 1-3 glucan synthesis in a drug-susceptible strain (3153; minimum inhibitory concentration (MIC) < 1 microgram ml-1) as well as in a drug-resistant strain of Candida albicans (CA-2, derived from 3153 by nitrosoguanidine mutagenesis; MIC > 50 micrograms ml-1). This was demonstrated for both whole cells under growing and non-growing conditions, and during protoplast regeneration. However, time-effect experiments, during growth of a CA-2 culture initially exposed to an inhibitory dose of cilofungin, showed that this strain was able to progressively regain both glucan synthesis and a growth rate comparable to that of cultures that had not been treated with the drug. This recovery was not attributable to cilofungin instability or degradation within the CA-2 culture. Our study suggests the existence of an as yet unknown drug-related and/or cell-related factor(s) modulating the inhibition of glucan synthesis, and then contributing to the actual inhibitory effects of cilofungin in C. albicans.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/124784
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact