Abstract. In this article, we revise the estimation of the dose–response function described in Hirano and Imbens (2004, Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives, 73–84) by proposing a flexible way to estimate the generalized propensity score when the treatment variable is not necessarily normally distributed. We also provide a set of programs that accomplish this task. To do this, in the existing doseresponse program (Bia and Mattei, 2008, Stata Journal 8: 354–373), we substitute the maximum likelihood estimator in the first step of the computation with the more flexible generalized linear model.
Estimating the dose-response function through a GLM approach / Guardabascio, Barbara; Ventura, Marco. - In: THE STATA JOURNAL. - ISSN 1536-867X. - 14:(2014), pp. 141-158.
Estimating the dose-response function through a GLM approach
Ventura, Marco
2014
Abstract
Abstract. In this article, we revise the estimation of the dose–response function described in Hirano and Imbens (2004, Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives, 73–84) by proposing a flexible way to estimate the generalized propensity score when the treatment variable is not necessarily normally distributed. We also provide a set of programs that accomplish this task. To do this, in the existing doseresponse program (Bia and Mattei, 2008, Stata Journal 8: 354–373), we substitute the maximum likelihood estimator in the first step of the computation with the more flexible generalized linear model.File | Dimensione | Formato | |
---|---|---|---|
Ventura_Dose_2014 .pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
351.55 kB
Formato
Adobe PDF
|
351.55 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.