Background: Locoregional hyperthermia is applied to deep-seated tumours in the pelvic region. Two very different heating techniques are often applied: capacitive and radiative heating. In this paper, numerical simulations are applied to compare the performance of both techniques in heating of deep-seated tumours. Methods: Phantom simulations were performed for small (30 × 20 × 50 cm 3 ) and large (45 × 30 × 50 cm 3 ), homogeneous fatless and inhomogeneous fat-muscle, tissue-equivalent phantoms with a central or eccentric target region. Radiative heating was simulated with the 70 MHz AMC-4 system and capacitive heating was simulated at 13.56 MHz. Simulations were performed for small fatless, small (i.e. fat layer typically <2 cm) and large (i.e. fat layer typically >3 cm) patients with cervix, prostate, bladder and rectum cancer. Temperature distributions were simulated using constant hyperthermic-level perfusion values with tissue constraints of 44 °C and compared for both heating techniques. Results: For the small homogeneous phantom, similar target heating was predicted with radiative and capacitive heating. For the large homogeneous phantom, most effective target heating was predicted with capacitive heating. For inhomogeneous phantoms, hot spots in the fat layer limit adequate capacitive heating, and simulated target temperatures with radiative heating were 2–4 °C higher. Patient simulations predicted therapeutic target temperatures with capacitive heating for fatless patients, but radiative heating was more robust for all tumour sites and patient sizes, yielding target temperatures 1–3 °C higher than those predicted for capacitive heating. Conclusion: Generally, radiative locoregional heating yields more favourable simulated temperature distributions for deep-seated pelvic tumours, compared with capacitive heating. Therapeutic temperatures are predicted for capacitive heating in patients with (almost) no fat.

Locoregional hyperthermia of deep-seated tumours applied with capacitive and radiative systems. A simulation study / Kok, H. P.; Navarro, F.; Strigari, L.; Cavagnaro, M.; Crezee, J.. - In: INTERNATIONAL JOURNAL OF HYPERTHERMIA. - ISSN 0265-6736. - 34:6(2018), pp. 714-730. [10.1080/02656736.2018.1448119]

Locoregional hyperthermia of deep-seated tumours applied with capacitive and radiative systems. A simulation study

Cavagnaro, M.;
2018

Abstract

Background: Locoregional hyperthermia is applied to deep-seated tumours in the pelvic region. Two very different heating techniques are often applied: capacitive and radiative heating. In this paper, numerical simulations are applied to compare the performance of both techniques in heating of deep-seated tumours. Methods: Phantom simulations were performed for small (30 × 20 × 50 cm 3 ) and large (45 × 30 × 50 cm 3 ), homogeneous fatless and inhomogeneous fat-muscle, tissue-equivalent phantoms with a central or eccentric target region. Radiative heating was simulated with the 70 MHz AMC-4 system and capacitive heating was simulated at 13.56 MHz. Simulations were performed for small fatless, small (i.e. fat layer typically <2 cm) and large (i.e. fat layer typically >3 cm) patients with cervix, prostate, bladder and rectum cancer. Temperature distributions were simulated using constant hyperthermic-level perfusion values with tissue constraints of 44 °C and compared for both heating techniques. Results: For the small homogeneous phantom, similar target heating was predicted with radiative and capacitive heating. For the large homogeneous phantom, most effective target heating was predicted with capacitive heating. For inhomogeneous phantoms, hot spots in the fat layer limit adequate capacitive heating, and simulated target temperatures with radiative heating were 2–4 °C higher. Patient simulations predicted therapeutic target temperatures with capacitive heating for fatless patients, but radiative heating was more robust for all tumour sites and patient sizes, yielding target temperatures 1–3 °C higher than those predicted for capacitive heating. Conclusion: Generally, radiative locoregional heating yields more favourable simulated temperature distributions for deep-seated pelvic tumours, compared with capacitive heating. Therapeutic temperatures are predicted for capacitive heating in patients with (almost) no fat.
2018
capacitive heating; hyperthermia treatment planning; locoregional hyperthermia; RF heating; physiology; physiology (medical); cancer research
01 Pubblicazione su rivista::01a Articolo in rivista
Locoregional hyperthermia of deep-seated tumours applied with capacitive and radiative systems. A simulation study / Kok, H. P.; Navarro, F.; Strigari, L.; Cavagnaro, M.; Crezee, J.. - In: INTERNATIONAL JOURNAL OF HYPERTHERMIA. - ISSN 0265-6736. - 34:6(2018), pp. 714-730. [10.1080/02656736.2018.1448119]
File allegati a questo prodotto
File Dimensione Formato  
Kok_Locoregional_2018.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 5.56 MB
Formato Adobe PDF
5.56 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1244676
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
social impact