This paper proposes a maximum likelihood approach to jointly estimate marginal conditional quantiles of multivariate response variables in a linear regression framework. We consider a slight reparameterization of the multivariate asymmetric Laplace distribution proposed by Kotz et al. (2001) and exploit its location–scale mixture representation to implement a new EM algorithm for estimating model parameters. The idea is to extend the link between the asymmetric Laplace distribution and the well-known univariate quantile regression model to a multivariate context, i.e., when a multivariate dependent variable is concerned. The approach accounts for association among multiple responses and studies how the relationship between responses and explanatory variables can vary across different quantiles of the marginal conditional distribution of the responses. A penalized version of the EM algorithm is also presented to tackle the problem of variable selection. The validity of our approach is analyzed in a simulation study, where we also provide evidence on the efficiency gain of the proposed method compared to estimation obtained by separate univariate quantile regressions. A real data application examines the main determinants of financial distress in a sample of Italian firms.
Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress / Petrella, Lea; Raponi, Valentina. - In: JOURNAL OF MULTIVARIATE ANALYSIS. - ISSN 0047-259X. - 173:(2019), pp. 70-84. [10.1016/j.jmva.2019.02.008]
Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress
Lea Petrella;Valentina Raponi
2019
Abstract
This paper proposes a maximum likelihood approach to jointly estimate marginal conditional quantiles of multivariate response variables in a linear regression framework. We consider a slight reparameterization of the multivariate asymmetric Laplace distribution proposed by Kotz et al. (2001) and exploit its location–scale mixture representation to implement a new EM algorithm for estimating model parameters. The idea is to extend the link between the asymmetric Laplace distribution and the well-known univariate quantile regression model to a multivariate context, i.e., when a multivariate dependent variable is concerned. The approach accounts for association among multiple responses and studies how the relationship between responses and explanatory variables can vary across different quantiles of the marginal conditional distribution of the responses. A penalized version of the EM algorithm is also presented to tackle the problem of variable selection. The validity of our approach is analyzed in a simulation study, where we also provide evidence on the efficiency gain of the proposed method compared to estimation obtained by separate univariate quantile regressions. A real data application examines the main determinants of financial distress in a sample of Italian firms.File | Dimensione | Formato | |
---|---|---|---|
Petrella_Joint-estimation_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
445.74 kB
Formato
Adobe PDF
|
445.74 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.