Homology-dependent gene silencing (HDGS) is a ubiquitous phenomenon among fungi, plants, and animals. Gene silencing can be triggered and can affect artificially introduced nucleic acid molecules, both DNA and RNA, and/or can act on endogenous duplicated sequences. Although the various HDGS phenomena may be related each other, probably deriving from an ancestral defense mechanism, relevant differences do exist between different HDGS mechanisms. Especially in fungi, a variety of HDGS phenomena have been uncovered during the past 10 years: Gene inactivation of duplicated sequences can be achieved either through DNA-methylation and block of transcription or through sequence-specific degradation of mRNA. Moreover, duplicated sequences can also be specifically mutagenized. Studying HDGS in fungi gives us the opportunity to study such complex mechanisms in relatively simple organisms in which both genetic and biochemical approaches can be easily used.
Homology-dependent gene silencing mechanisms in fungi / Cogoni, Carlo. - In: ANNUAL REVIEW OF MICROBIOLOGY. - ISSN 0066-4227. - 55:(2001), pp. 381-406. [10.1146/annurev.micro.55.1.381]
Homology-dependent gene silencing mechanisms in fungi
COGONI, Carlo
2001
Abstract
Homology-dependent gene silencing (HDGS) is a ubiquitous phenomenon among fungi, plants, and animals. Gene silencing can be triggered and can affect artificially introduced nucleic acid molecules, both DNA and RNA, and/or can act on endogenous duplicated sequences. Although the various HDGS phenomena may be related each other, probably deriving from an ancestral defense mechanism, relevant differences do exist between different HDGS mechanisms. Especially in fungi, a variety of HDGS phenomena have been uncovered during the past 10 years: Gene inactivation of duplicated sequences can be achieved either through DNA-methylation and block of transcription or through sequence-specific degradation of mRNA. Moreover, duplicated sequences can also be specifically mutagenized. Studying HDGS in fungi gives us the opportunity to study such complex mechanisms in relatively simple organisms in which both genetic and biochemical approaches can be easily used.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.