It becomes clear from the literature described above (Chapter 1), that the error monitoring mechanisms play a fundamental role in signalling the need for cognitive control. Many studies already provided a consistent evidence on the existence of peculiar ways in which the brain signals this need through electrophysiological changes. However, the following set of empirical studies aims to gain further insight into these complex processes by measuring brain activity changes in situations that alter the way one experience errors. The second Chapter (Chapter 2) consists of a brief commentary that was made in response to an article on the brain activity to action errors. In this commentary we propose new possibilities to explore our topic of interest, by taking advantage of EEG and modern virtual reality facilities. The thesis includes three EEG-VR studies: one on the error-mechanism in healthy participants (Chapter 3) and two studies on error monitoring system in pathological populations (Chapter 4, 5), as main parts of the core of the thesis. As a collateral project, in the Appendix, there is an EEG study on action observation in elite players (Chapter 7). In the first study (Chapter 3), we investigated a very simple but fundamental question. As we saw in the introduction, error-related signatures are evoked when an error occurs. But it is not clear how much of this is due to the occurrence of a violation of the intended goal or simply to the observation of a rare – thus less predictable – event. To this aim, we used a paradigm developed in the former years in our laboratory (Pavone et al., 2016; Spinelli et al., 2017), characterized by a setup in immersive Virtual Reality (VR) and simultaneous EEG recording. Building on the previous findings, we designed an EEG-VR study in which we manipulated the probability of observing errors in actions. In another study (Chapter 4) we investigated how erroneous actions are experienced by people with brain damage and diagnosis of Apraxia. Apraxic patients are people with hemispheric lesions and defective awareness on a variety of aspects that cover perceptuo-motor, cognitive or emotional domains. This study was developed after the results obtained by Canzano and colleagues (2014) in a behavioral study in which apraxic patients were asked to imitate the actions executed by the experimenter and judge their correctness; results revealed that bucco-facial apraxic patients manifest a specific deficit in detecting their own gestural errors when they are explicitly asked to judge them. With the present study we wanted to investigate apraxic brain’ response to action errors, while they embody an avatar in first person perspective (EEG-VR setup). The third study (Chapter 5) investigates the integrity of the error-monitoring system in Parkinson’s Disease and the impact of the dopaminergic treatment in the brain response to errors. To this aim we used the proposed VR action-observation paradigm, in which Parkinson patients observed successful and unsuccessful reach-to-grasp actions in first person perspective while EEG activity was recorded; the same patients were tested while being under dopaminergic treatment and during a dopaminergic withdrawal state. In another chapter we provide a critical overview of the findings of this work (General Discussion, Chapter 6). In the last chapter, the Appendix (Chapter 7), there is a collateral project of another research line of the Laboratory, in which I have being involved. In this study we are investigating the cortical underpinning of elite players during observation of goal-directed actions, in their domain of expertise. We recorded the EEG activity of elite wheelchair basketball players while observing free-throws performed by paraplegic athletes. We expected their brain correlates to be different from novice players and to be able to easily discriminate whether a basketball shot would be successful or unsuccessful (project still ongoing).

Electrocortical underpinnings of error monitoring in health and pathology / Pezzetta, Rachele. - (2019 Feb 14).

Electrocortical underpinnings of error monitoring in health and pathology

PEZZETTA, RACHELE
14/02/2019

Abstract

It becomes clear from the literature described above (Chapter 1), that the error monitoring mechanisms play a fundamental role in signalling the need for cognitive control. Many studies already provided a consistent evidence on the existence of peculiar ways in which the brain signals this need through electrophysiological changes. However, the following set of empirical studies aims to gain further insight into these complex processes by measuring brain activity changes in situations that alter the way one experience errors. The second Chapter (Chapter 2) consists of a brief commentary that was made in response to an article on the brain activity to action errors. In this commentary we propose new possibilities to explore our topic of interest, by taking advantage of EEG and modern virtual reality facilities. The thesis includes three EEG-VR studies: one on the error-mechanism in healthy participants (Chapter 3) and two studies on error monitoring system in pathological populations (Chapter 4, 5), as main parts of the core of the thesis. As a collateral project, in the Appendix, there is an EEG study on action observation in elite players (Chapter 7). In the first study (Chapter 3), we investigated a very simple but fundamental question. As we saw in the introduction, error-related signatures are evoked when an error occurs. But it is not clear how much of this is due to the occurrence of a violation of the intended goal or simply to the observation of a rare – thus less predictable – event. To this aim, we used a paradigm developed in the former years in our laboratory (Pavone et al., 2016; Spinelli et al., 2017), characterized by a setup in immersive Virtual Reality (VR) and simultaneous EEG recording. Building on the previous findings, we designed an EEG-VR study in which we manipulated the probability of observing errors in actions. In another study (Chapter 4) we investigated how erroneous actions are experienced by people with brain damage and diagnosis of Apraxia. Apraxic patients are people with hemispheric lesions and defective awareness on a variety of aspects that cover perceptuo-motor, cognitive or emotional domains. This study was developed after the results obtained by Canzano and colleagues (2014) in a behavioral study in which apraxic patients were asked to imitate the actions executed by the experimenter and judge their correctness; results revealed that bucco-facial apraxic patients manifest a specific deficit in detecting their own gestural errors when they are explicitly asked to judge them. With the present study we wanted to investigate apraxic brain’ response to action errors, while they embody an avatar in first person perspective (EEG-VR setup). The third study (Chapter 5) investigates the integrity of the error-monitoring system in Parkinson’s Disease and the impact of the dopaminergic treatment in the brain response to errors. To this aim we used the proposed VR action-observation paradigm, in which Parkinson patients observed successful and unsuccessful reach-to-grasp actions in first person perspective while EEG activity was recorded; the same patients were tested while being under dopaminergic treatment and during a dopaminergic withdrawal state. In another chapter we provide a critical overview of the findings of this work (General Discussion, Chapter 6). In the last chapter, the Appendix (Chapter 7), there is a collateral project of another research line of the Laboratory, in which I have being involved. In this study we are investigating the cortical underpinning of elite players during observation of goal-directed actions, in their domain of expertise. We recorded the EEG activity of elite wheelchair basketball players while observing free-throws performed by paraplegic athletes. We expected their brain correlates to be different from novice players and to be able to easily discriminate whether a basketball shot would be successful or unsuccessful (project still ongoing).
14-feb-2019
File allegati a questo prodotto
File Dimensione Formato  
Tesi_dottorato_Pezzetta.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.5 MB
Formato Adobe PDF
3.5 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1239999
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact