Partial similarity problems arise in numerous applications that involve real data acquisition by 3D sensors, inevitably leading to missing parts due to occlusions and partial views. In this setting, the shapes to be retrieved may undergo a variety of transformations simultaneously, such as non-rigid deformations (changes in pose), topological noise, and missing parts–a combination of nuisance factors that renders the retrieval process extremely challenging. With this benchmark, we aim to evaluate the state of the art in deformable shape retrieval under such kind of transformations. The benchmark is organized in two sub-challenges exemplifying different data modalities (3D vs. 2.5 D). A total of 15 retrieval algorithms were evaluated in the contest; this paper presents the details of the dataset, and shows thorough comparisons among all competing methods.

SHREC'17: deformable shape retrieval with missing parts / Rodolà, E.; Cosmo, L.; Litany, O.; Bronstein, M. M.; Bronstein, A. M.; Audebert, N.; Ben Hamza, A.; Boulch, A.; Castellani, U.; Do, M. N.; Duong, A-D.; Furuya, T.; Gasparetto, A.; Hong, Y.; Kim, J.; Le Saux, B.; Litman, R.; Masoumi, M.; Minello, G.; Nguyen, H-D.; Nguyen, V-T.; Ohbuchi, R.; Pham, V-K.; Phan, T. V.; Rezaei, M.; Torsello, A.; Tran, M-T.; Tran, Q-T.; Truong, B.; Wan, L.; Zou, C.. - (2017). (Intervento presentato al convegno Proceedings of the Eurographics Workshop on 3D Object Retrieval tenutosi a Lyon) [10.2312/3dor.20171057].

SHREC'17: deformable shape retrieval with missing parts

E. Rodolà;L. Cosmo;
2017

Abstract

Partial similarity problems arise in numerous applications that involve real data acquisition by 3D sensors, inevitably leading to missing parts due to occlusions and partial views. In this setting, the shapes to be retrieved may undergo a variety of transformations simultaneously, such as non-rigid deformations (changes in pose), topological noise, and missing parts–a combination of nuisance factors that renders the retrieval process extremely challenging. With this benchmark, we aim to evaluate the state of the art in deformable shape retrieval under such kind of transformations. The benchmark is organized in two sub-challenges exemplifying different data modalities (3D vs. 2.5 D). A total of 15 retrieval algorithms were evaluated in the contest; this paper presents the details of the dataset, and shows thorough comparisons among all competing methods.
2017
Proceedings of the Eurographics Workshop on 3D Object Retrieval
Deformable Shape; Missing parts; Retrieval algorithms
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
SHREC'17: deformable shape retrieval with missing parts / Rodolà, E.; Cosmo, L.; Litany, O.; Bronstein, M. M.; Bronstein, A. M.; Audebert, N.; Ben Hamza, A.; Boulch, A.; Castellani, U.; Do, M. N.; Duong, A-D.; Furuya, T.; Gasparetto, A.; Hong, Y.; Kim, J.; Le Saux, B.; Litman, R.; Masoumi, M.; Minello, G.; Nguyen, H-D.; Nguyen, V-T.; Ohbuchi, R.; Pham, V-K.; Phan, T. V.; Rezaei, M.; Torsello, A.; Tran, M-T.; Tran, Q-T.; Truong, B.; Wan, L.; Zou, C.. - (2017). (Intervento presentato al convegno Proceedings of the Eurographics Workshop on 3D Object Retrieval tenutosi a Lyon) [10.2312/3dor.20171057].
File allegati a questo prodotto
File Dimensione Formato  
Rodola_SHREC'17_2017.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1230779
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? ND
social impact