The goal of these course notes is to describe the main mathematical ideas behind geometric deep learning and to provide implementation details for several applications in shape analysis and synthesis, computer vision and computer graphics. The text in the course materials is primarily based on previously published work. With these notes we gather and provide a clear picture of the key concepts and techniques that fall under the umbrella of geometric deep learning, and illustrate the applications they enable. We also aim to provide practical implementation details for the methods presented in these works, as well as suggest further readings and extensions of these ideas.

Geometric deep learning / Masci, Jonathan; Rodolà, Emanuele; Boscaini, Davide; Bronstein, Michael M.; Hao, Li. - (2016), pp. 1-50. (Intervento presentato al convegno 2016 SIGGRAPH ASIA Courses, SA 2016 tenutosi a Macau; China) [10.1145/2988458.2988485].

Geometric deep learning

Rodolà, Emanuele;
2016

Abstract

The goal of these course notes is to describe the main mathematical ideas behind geometric deep learning and to provide implementation details for several applications in shape analysis and synthesis, computer vision and computer graphics. The text in the course materials is primarily based on previously published work. With these notes we gather and provide a clear picture of the key concepts and techniques that fall under the umbrella of geometric deep learning, and illustrate the applications they enable. We also aim to provide practical implementation details for the methods presented in these works, as well as suggest further readings and extensions of these ideas.
2016
2016 SIGGRAPH ASIA Courses, SA 2016
Geometric deep learning; Shape analysis; Computer vision
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Geometric deep learning / Masci, Jonathan; Rodolà, Emanuele; Boscaini, Davide; Bronstein, Michael M.; Hao, Li. - (2016), pp. 1-50. (Intervento presentato al convegno 2016 SIGGRAPH ASIA Courses, SA 2016 tenutosi a Macau; China) [10.1145/2988458.2988485].
File allegati a questo prodotto
File Dimensione Formato  
Rodola_Geometric_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 55.62 MB
Formato Adobe PDF
55.62 MB Adobe PDF   Contatta l'autore
Rodola_Geometric_2016.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 7.41 MB
Formato Adobe PDF
7.41 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1229139
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? ND
social impact