We present a method to match three dimensional shapes under non-isometric deformations, topology changes and partiality. We formulate the problem as matching between a set of pair-wise and point-wise descriptors, imposing a continuity prior on the mapping, and propose a projected descent optimization procedure inspired by difference of convex functions (DC) programming.
Efficient deformable shape correspondence via kernel matching / Vestner, Matthias; Lahner, Zorah; Boyarski, Amit; Litany, Or; Slossberg, Ron; Remez, Tal; Rodola, Emanuele; Bronstein, Alex; Bronstein, Michael; Kimmel, Ron; Cremers, Daniel. - (2018), pp. 517-526. (Intervento presentato al convegno 7th IEEE International Conference on 3D Vision, 3DV 2017 tenutosi a Qingdao; China) [10.1109/3DV.2017.00065].
Efficient deformable shape correspondence via kernel matching
Rodola, Emanuele;
2018
Abstract
We present a method to match three dimensional shapes under non-isometric deformations, topology changes and partiality. We formulate the problem as matching between a set of pair-wise and point-wise descriptors, imposing a continuity prior on the mapping, and propose a projected descent optimization procedure inspired by difference of convex functions (DC) programming.File | Dimensione | Formato | |
---|---|---|---|
Rodola_Efficient_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.02 MB
Formato
Adobe PDF
|
3.02 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.