Functional representation is a well-established approach to represent dense correspondences between deformable shapes. The approach provides an efficient low rank representation of a continuous mapping between two shapes, however under that framework the correspondences are only intrinsically captured, which implies that the induced map is not guaranteed to map the whole surface, much less to form a continuous mapping. In this work, we define a novel approach to the computation of a continuous bijective map between two surfaces moving from the low rank spectral representation to a sparse spatial representation. Key to this is the observation that continuity and smoothness of the optimal map induces structure both on the spectral and the spatial domain, the former providing effective low rank approximations, while the latter exhibiting strong sparsity and locality that can be used in the solution of large-scale problems. We cast our approach in terms of the functional transfer through a fuzzy map between shapes satisfying infinitesimal mass transportation at each point. The result is that, not only the spatial map induces a sub-vertex correspondence between the surfaces, but also the transportation of the whole surface, and thus the bijectivity of the induced map is assured. The performance of the proposed method is assessed on several popular benchmarks.

Spatial Maps: from low rank spectral to sparse spatial functional representations / Gasparetto, Andrea; Cosmo, Luca; Rodola, Emanuele; Bronstein, Michael; Torsello, Andrea. - (2018), pp. 477-485. (Intervento presentato al convegno 7th IEEE International Conference on 3D Vision, 3DV 2017 tenutosi a Qingdao; China) [10.1109/3DV.2017.00061].

Spatial Maps: from low rank spectral to sparse spatial functional representations

Cosmo, Luca;Rodola, Emanuele;
2018

Abstract

Functional representation is a well-established approach to represent dense correspondences between deformable shapes. The approach provides an efficient low rank representation of a continuous mapping between two shapes, however under that framework the correspondences are only intrinsically captured, which implies that the induced map is not guaranteed to map the whole surface, much less to form a continuous mapping. In this work, we define a novel approach to the computation of a continuous bijective map between two surfaces moving from the low rank spectral representation to a sparse spatial representation. Key to this is the observation that continuity and smoothness of the optimal map induces structure both on the spectral and the spatial domain, the former providing effective low rank approximations, while the latter exhibiting strong sparsity and locality that can be used in the solution of large-scale problems. We cast our approach in terms of the functional transfer through a fuzzy map between shapes satisfying infinitesimal mass transportation at each point. The result is that, not only the spatial map induces a sub-vertex correspondence between the surfaces, but also the transportation of the whole surface, and thus the bijectivity of the induced map is assured. The performance of the proposed method is assessed on several popular benchmarks.
2018
7th IEEE International Conference on 3D Vision, 3DV 2017
Partial-Shape-Matching; Shape-Analysis; Shape-Matching
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Spatial Maps: from low rank spectral to sparse spatial functional representations / Gasparetto, Andrea; Cosmo, Luca; Rodola, Emanuele; Bronstein, Michael; Torsello, Andrea. - (2018), pp. 477-485. (Intervento presentato al convegno 7th IEEE International Conference on 3D Vision, 3DV 2017 tenutosi a Qingdao; China) [10.1109/3DV.2017.00061].
File allegati a questo prodotto
File Dimensione Formato  
Rodola_Spatial_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1229093
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 9
social impact