We propose novel point descriptors for 3D shapes with the potential to match two shapes representing the same object undergoing natural deformations. These deformations are more general than the often assumed isometries, and we use labeled training data to learn optimal descriptors for such cases. Furthermore, instead of explicitly defining the descriptor, we introduce new Mercer kernels, for which we formally show that their corresponding feature space mapping is a generalization of either the Heat Kernel Signature or the Wave Kernel Signature. I.e. the proposed descriptors are guaranteed to be at least as precise as any Heat Kernel Signature or Wave Kernel Signature of any parameterisation. In experiments, we show that our implicitly defined, infinite-dimensional descriptors can better deal with non-isometric deformations than state-of-the-art methods.

Optimal intrinsic descriptors for non-rigid shape analysis / Windheuser, Thomas; Vestner, Matthias; Rodolà, Emanuele; Triebel, Rudolph; Cremers, Daniel. - (2014). (Intervento presentato al convegno 25th British Machine Vision Conference, BMVC 2014 tenutosi a Nottingham; United Kingdom) [10.5244/c.28.44].

Optimal intrinsic descriptors for non-rigid shape analysis

Rodolà, Emanuele;
2014

Abstract

We propose novel point descriptors for 3D shapes with the potential to match two shapes representing the same object undergoing natural deformations. These deformations are more general than the often assumed isometries, and we use labeled training data to learn optimal descriptors for such cases. Furthermore, instead of explicitly defining the descriptor, we introduce new Mercer kernels, for which we formally show that their corresponding feature space mapping is a generalization of either the Heat Kernel Signature or the Wave Kernel Signature. I.e. the proposed descriptors are guaranteed to be at least as precise as any Heat Kernel Signature or Wave Kernel Signature of any parameterisation. In experiments, we show that our implicitly defined, infinite-dimensional descriptors can better deal with non-isometric deformations than state-of-the-art methods.
2014
25th British Machine Vision Conference, BMVC 2014
computer vision; descriptors; shape analysis
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Optimal intrinsic descriptors for non-rigid shape analysis / Windheuser, Thomas; Vestner, Matthias; Rodolà, Emanuele; Triebel, Rudolph; Cremers, Daniel. - (2014). (Intervento presentato al convegno 25th British Machine Vision Conference, BMVC 2014 tenutosi a Nottingham; United Kingdom) [10.5244/c.28.44].
File allegati a questo prodotto
File Dimensione Formato  
Windheuser_Optimal_2014.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 865.79 kB
Formato Adobe PDF
865.79 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1229034
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? ND
social impact